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Introduction

We are pleased to bring you the Proceedings of the Fourth Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT), held in Grenoble, France on the 21st and 22nd
of August, 2013. We received 23 paper submissions, of which 12 were chosen for oral presen-
tation and another 5 for poster presentation. In addition, two demo proposals were accepted.
All 19 papers are included in this volume.

This workshop was intended to bring researchers from all areas of speech and language technol-
ogy with a common interest in making everyday life more accessible for people with physical,
cognitive, sensory, emotional or developmental disabilities. This workshop builds on three pre-
vious such workshops (co-located with NAACL HLT 2010, EMNLP in 2011, and NAACL
HLT 2012) and includes a special topic, “Speech Interaction Technology for Ambient Assisted
Living in the Home”, which is a follow-up of two events (ILADI 2012 co-located with JEP-
TALN-RECITAL 2012 and a special session in EUSIPCO 2012). The workshop provides an
opportunity for individuals from research communities, and the individuals with whom they
are working, to share research findings, and to discuss present and future challenges and the
potential for collaboration and progress.

While Augmentative and Alternative Communication (AAC) is a particularly apt application
area for speech and Natural Language Processing (NLP) technologies, we purposefully made
the scope of the workshop broad enough to include assistive technologies (AT) as a whole, even
those falling outside of AAC. While we encouraged work that validates methods with human
experimental trials, we also accepted work on basic-level innovations and philosophy, inspired
by AT/AAC related problems. Thus we have aimed at broad inclusivity, which is also manifest
in the diversity of our Program Committee.

We are very delighted to have Prof. Mark Hawley from the University of Sheffield as invited
speaker. In addition we continue our tradition of a panel of AAC users, who will speak on their
experiences and perspectives as users of AAC technology. Finally, this year we also have a tour
of the DOMUS “smart home” of the Laboratoire d’Informatique de Grenoble. Because of the
many submissions and program points, we have for the first time extended the workshop to two
full days.

We would like to thank all the people and institutions who contributed to the success of the
SLPAT 2013 workshop: the authors, the members of the program committee, the member of
the organising committee and the invited speaker Mark Hawley. Finally, we would like to
thank the Universities of Grenoble for sponsoring and hosting the workshop in the Laboratoire
d’Informatique de Grenoble premises.

Jan Alexandersson, Peter Ljunglöf, Kathleen F. McCoy, François Portet,
Brian Roark, Frank Rudzicz and Michel Vacher

Co-organizers of SLPAT 2013
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Yacine Bellik, Université Paris-Sud/LIMSI, France
Rolf Black, University of Dundee, UK
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SLPAT in practice: lessons from translational research

Mark Hawley

School of Health and Related Research, University of Sheffield, UK
mark.hawley@sheffield.ac.uk

Abstract
The talk will distil experience and results from several projects, over more than a decade, which
have researched and developed the application of speech recognition as an input modality for
assistive technology (AT). Current interfaces to AT for people with severe physical disabilities,
such as switch-scanning, can be prohibitively slow and tiring to use. Many people with severe
physical disabilities also have some speech, though many also have poor control of speech
articulators, leading to dysarthria. Nonetheless, recognition of dysarthric speech can give people
more control options than using body movement alone. Speech can therefore be an attractive
option for AT input.

Techniques that have been developed for optimising the recognition of dysarthric speech will
be described, resulting in recognition rates of greater than 80% for people with even the most
severe dysarthria. Speech recognition has been applied as a means of controlling the home (via
an environmental control system) and, probably for the first time, as a means of controlling a
communication aid. The development of the Voice Input Voice Output Communication Aid
(VICOCA) will be described and some early results of its evaluation presented.

The talk will discuss some of the lessons learnt from these projects, such as:

• The need to work in interdisciplinary teams including speech technologists, speech and
language therapists, health researchers and assistive technologists.

• The value of user-centred design, involving users in defining their wants and needs and
then working with them, in an iterative manner, to refine the AT such that it becomes
usable and acceptable.

• The gap that exists between the results that can be achieved in the lab and those achiev-
able in peoples homes under real usage conditions – something that is not often covered
in research papers.

• The practical approaches that can be applied to optimising recognition for individuals.
It is often possible to make significant improvements in recognition rates by altering the
configuration of the AT set-up.

The talk will conclude by describing some of the future potential applications of speech tech-
nology that are being developed, or considered, for people with disabilities as well as for frail
older people and people with long-term conditions.
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Individuality-Preserving Voice Conversion for Articulation Disorders Using
Locality-Constrained NMF

Ryo AIHARA, Tetsuya TAKIGUCHI, Yasuo ARIKI

Graduate School of System Informatics, Kobe University, Japan
aihara@me.cs.scitec.kobe-u.ac.jp

takigu@kobe-u.ac.jp, ariki@kobe-u.ac.jp

Abstract
We present in this paper a voice conversion (VC) method for
a person with an articulation disorder resulting from athetoid
cerebral palsy. The movements of such speakers are limited by
their athetoid symptoms, and their consonants are often unstable
or unclear, which makes it difficult for them to communicate.
In this paper, exemplar-based spectral conversion using Non-
negative Matrix Factorization (NMF) is applied to a voice with
an articulation disorder. In order to preserve the speaker’s in-
dividuality, we use a combined dictionary that was constructed
from the source speaker’s vowels and target speaker’s conso-
nants. Also, in order to avoid an unclear converted voice, which
is constructed using the combined dictionary, we used locality-
constrained NMF. The effectiveness of this method was con-
firmed by comparing its effectiveness with that of a conven-
tional Gaussian Mixture Model (GMM)-based method.
Index Terms: Voice Conversion, NMF, Articulation Disorders,
Assistive Technologies

1. Introduction
In this study, we propose assistive technology for people with
speech impediments. There are 34,000 people with speech
impediments associated with an articulation disorder in Japan
alone. Articulation disorders are classified into three types.
Functional articulation disorders exist in the absence of any
apparent cause and are related to deficiencies in the relatively
peripheral motor processes. Organic articulation disorders are
articulation problems that are associated with structural abnor-
malities and known impairments, such as cleft lip and palate,
tongue tie, hearing impairment, etc. Motor speech disorders in-
volve problems with strength and control of the speech muscu-
lature. We propose a voice conversion system, which converts
an articulation-disordered voice into a non-disordered voice, for
people with motor speech disorders.

Cerebral palsy is one of the typical causes of motor speech
disorders. About two babies in 1,000 are born with cerebral
palsy [1]. Cerebral palsy results from damage to the central
nervous system, and the damage causes movement disorders.
Three general times are given for the onset of the disorder: be-
fore birth, at the time of delivery, and after birth. Cerebral palsy
is classified into the following types: 1) spastic, 2) athetoid, 3)
ataxic, 4) atonic, 5) rigid, and a mixture of these types [2].

In this study, we focused on a person with an articula-
tion disorder resulting from the athetoid type of cerebral palsy.
Athetoid symptoms develop in about 10-20% of cerebral palsy
sufferers [1]. In the case of a person with this type of articula-
tion disorder, his/her movements are sometimes more unstable
than usual. Because of this symptom, their utterances (espe-

cially their consonants) are often unstable or unclear. Most peo-
ple suffering from athetoid cerebral palsy cannot communicate
by sign language, writing or voice synthesizer [3, 4, 5] because
athetoid symptoms also restrict the movement of the sufferer’s
arms and legs. For this reason, there is a great need for a voice
conversion (VC) system for such people.

Automatic speech recognition system for people with artic-
ulation disorders resulting from athetoid cerebral palsy has been
studied. Matsumasa et al. [6] proposed robust feature extrac-
tion based on PCA (Principal Component Analysis) with more
stable utterance data instead of DCT. Miyamoto et al. [7] used
multiple acoustic frames (MAF) as an acoustic dynamic feature
to improve the recognition rate of a person with an articula-
tion disorder, especially in speech recognition using dynamic
features only. In spite of these efforts, the recognition rate for
articulation disorders is still lower than that of physically unim-
paired persons. The recognition rate for people with articulation
disorders using a speaker-independent model trained by non-
disordered speech is 3.5%. This result implies that the speech
of a person with an articulation disorder is difficult to under-
stand for people who have not communicated with them before.

A GMM-based approach is widely used for VC because of
its flexibility and good performance [8]. This approach has been
applied to various tasks, such as speaker conversion [9], emo-
tion conversion [10, 11], and so on. In the field of assistive tech-
nology, Nakamura et al. [12] proposed a GMM-based speak-
ing aid system for electrolaryngeal speech. In this approach,
the conversion function is interpreted as the expectation value
of the target spectral envelope. The conversion parameters are
evaluated using Minimum Mean-Square Error (MMSE) using a
parallel training set. If the person with an articulation disorder
is set as a source speaker and a physically unimpaired person is
set as a target speaker, an articulation-disordered voice may be
converted into a non-disordered voice. However, because the
GMM-based approach has been developed mainly for speaker
conversion [9], the source speaker’s voice individuality is also
converted into the target speaker’s individuality.

In this paper, we propose a VC method for articulation dis-
orders. There are two main benefits to our VC method. 1) We
convert the speaker’s voice into a non-disordered voice, thus
preserving their voice individuality. People with articulation
disorders wish to communicate by their own voice if they can
therefore, this is important for VC as assistive technology. 2)
Our method outputs a natural-sounding voice. Because our VC
is exemplar-based and there is no statistical model, we can cre-
ate a natural sounding voice.

In the research discussed in this paper, we conducted VC
for articulation disorders using Non-negative Matrix Factoriza-
tion (NMF) [13]. NMF is a well-known approach for source
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separation and speech enhancement. In these approaches, the
observed signal is represented by a linear combination of a
small number of elementary vectors, referred to as the basis,
and its weights. In some approaches for source separation, the
bases are grouped for each source, and the mixed signals are
expressed with a sparse representation of these bases. Gem-
meke et al. proposes an exemplar-based method for noise robust
speech recognition [14].

In our study, we adopt the supervised NMF approach [15],
with a focus on VC from poorly articulated speech result-
ing from articulation disorders into non-disordered articulation.
The parallel exemplars (called the ‘dictionary’ in this paper),
which consist of articulation-disordered exemplars and a non-
disordered exemplars, are extracted from the parallel data. An
input spectrum with an articulation disorder is represented by
a linear combination of articulation-disordered exemplars using
NMF. By replacing an articulation-disordered basis with a non-
disordered basis, the original speech spectrum is replaced with
a non-disordered spectrum.

In the voice of a person with an articulation disorder, their
consonants are often unstable and that makes their voices un-
clear. Their vowels are relatively-stable compared to their con-
sonants. Hence, by replacing the articulation-disordered basis
of consonants only, a voice with an articulation disorder is con-
verted into a non-disordered voice that preserves the individ-
uality of the speaker’s voice. In order to avoid a mixture of
the source and target spectra in a converted phoneme which is
constructed using the combined dictionary, we adopted locality-
constraint to the supervised NMF.

The rest of this paper is organized as follows: In Section 2,
NMF-based VC is described, the experimental data is evaluated
in Section 3, and the final section is devoted to our conclusions.

2. Voice Conversion Based on NMF
2.1. Basic Approach of Exemplar-Based Voice Conversion

In the exemplar-based approach, the observed signal is repre-
sented by a linear combination of a small number of bases.

xl ≈
J∑

j=1

ajhj,l = Ahl (1)

xl is thel-th frame of the observation.aj andhj,l are thej-th
basis and the weight, respectively.A = [a1 . . .aJ ] andhl =
[h1,l . . . hJ,l]

T are the collection of the bases and the stack of
weights. When the weight vectorhl is sparse, the observed
signal can be represented by a linear combination of a small
number of bases that have non-zero weights. In this paper, each
basis denotes the exemplar of the spectrum, and the collection
of exemplarA and the weight vectorhl are called ‘dictionary’
and ‘activity’, respectively.

Fig. 1 shows the basic approach of our exemplar-based VC
using NMF.D, d, L, andJ represent the number of dimen-
sions of source features, dimensions of target features, frames
of the dictionary, and basis of the dictionary, respectively. Our
VC method needs two dictionaries that are phonemically paral-
lel. One dictionary is a source dictionary, which is constructed
from source features. Source features are constructed from an
articulation-disordered spectrum and its segment features. The
other dictionary is a target dictionary, which is constructed from
target features. Target features are mainly constructed from a
well-ordered spectrum. These two dictionaries consist of the
same words and are aligned with dynamic time warping (DTW).
Hence, these dictionaries have the same number of bases.

Input source featuresXs, which consist of an articulation-
disordered spectrum and its segment features, are decomposed
into a linear combination of bases from the source dictionary
As by NMF. The weights of the bases are estimated as an activ-
ity Hs. Therefore, the activity includes the weight information
of input features for each basis. Then, the activity is multiplied
by a target dictionary in order to obtain converted spectral fea-
turesX̂t which are represented by a linear combination of bases
from the target dictionary. Because the source and target dictio-
nary are parallel phonemically, the bases used in the converted
features is phonemically the same as that of the source features.

Fig. 2 shows an example of the activity matrices estimated
from a word “ikioi” (“vigor” in English). One is uttered by
a person with an articulation disorder, and the other is uttered
by a physically unimpaired person. To show an intelligible ex-
ample, each dictionary was structured from just the one word
“ikioi” and aligned with DTW. As shown in Fig. 2, these ac-
tivities have high energies at similar elements. For this reason,
when there are parallel dictionaries, the activity of the source
features estimated with the source dictionary may be able to be
substituted with that of the target features. Therefore, the target
speech can be constructed using the target dictionary and the
activity of the source signal as shown in Fig. 1.

Spectral envelopes extracted by STRAIGHT analysis [16]
are used in the source and target features. The other features
extracted by STRAIGHT analysis, such as F0 and the aperiodic
components, are used to synthesize the converted signal without
any conversion.

Figure 1: Basic approach of NMF-based voice conversion

B
as

is
 I

D
 in

 s
ou

rc
e 

di
ct

io
na

ry

Frame of source speech

B
as

is
 I

D
 in

 ta
rg

et
 d

ic
ti

on
ar

y

Frame of target speech

20 40 60 80 100 120 140

50

100

150

200

250

20 40 60 80 100 120

50

100

150

200

250

Figure 2: Activity matrices for the articulation-disordered utter-
ance (left) and well-ordered utterance (right)
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2.2. Constructing Dictionary to Preserve Individuality

In order to make a parallel dictionary, some pairs of parallel ut-
terances are needed, where each pair consists of the same text.
One is spoken by a person with an articulation disorder (source
speaker), and the other is spoken by a physically unimpaired
person (target speaker). The left side of Fig. 3 shows the process
for constructing a parallel dictionary. STRAIGHT spectrum is
extracted from parallel utterances. The extracted STRAIGHT
spectra are phonemically aligned with DTW. The Mel-cepstral
coefficient, which is converted from the STRAIGHT spectrum,
is used to align. In order to estimate the activities of the source
features precisely, segment features of source features, which
consist of some consecutive frames, are constructed. Target
features are constructed from consonant frames of the target’s
aligned spectrum and vowel frames of the source’s aligned spec-
trum. Source and target dictionaries are constructed by lining up
each of the features extracted from parallel utterances.

The right side of Fig. 3 shows how to preserve a source
speaker’s voice individuality in our VC method. Fig. 4 shows
examples of the spectrogram for the word “ikioi” (“vigor” in
English) of a person with an articulation disorder and a phys-
ically unimpaired person. The vowels of a person’s voice
strongly imply a speaker’s individuality. On the other hand, the
consonants of people with articulation disorders are often unsta-
ble. In Fig. 4, the area labeled “k” in the articulation-disordered
spectrum is not clear, compared to that of the same region spo-
ken by a physically unimpaired person. Therefore, by combin-
ing the source speaker’s vowels and target speaker’s consonants
in the target dictionary, the individuality of the source speaker’s
voice can be preserved.

2.3. Estimation of Activity with Locality Constraint

In the NMF-based approach, the spectrum source signal at
frame l is approximately expressed by a non-negative linear
combination of the source dictionary and the activities.

xl = xs
l

≈
J∑

j=1

as
jh

s
j,l (2)
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(a) Spoken by a person with an articulation disorder
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(b) Spoken by a physically unimpaired person

Figure 4: Examples of source and target spectrogram //i k i oi

xs
l ∈ Xs is the magnitude spectrum of the source signal.

Instead of using all bases, locality constraint is introduced.

∆j,l =
√

(xs
l − as

j)
2 (3)

∆l is a distance vector betweenxs
l andas. N nearest bases are

chosen from all the bases.

Ss
l = nbest∆l(a1,a2, . . . ,aJ)

= nbest∆l(A) (4)

Ss
l is a set of nearest bases ofxs

l . The number of basis is defined
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by N . Eq. (2) can be written as follows:

xl = xs
l

≈
N∑

j=1

Ss
l,jh

s
j,l

= Slhl s.t. hl ≥ 0 (5)

Xs ≈ SsHs s.t. Hs ≥ 0 (6)

The joint matrixHs is estimated based on NMF with the sparse
constraint that minimizes the following cost function.

d(Xs,SsHs) + ||(λ11×L). ∗ Hs||1 s.t. Hs ≥ 0 (7)

1 is an all-one matrix. The first term is the Kullback-Leibler
(KL) divergence betweenXs andSsHs. The second term is
the sparse constraint with the L1-norm regularization term that
causesHs to be sparse. The weights of the sparsity constraints
can be defined for each exemplar by definingλT = [λ1 . . . λJ ].
In this paper, all elements inλ were set to 1.Hs minimizing
Eq. (7) is estimated iteratively applying the following update
rule [13]:

Hs
n+1 = Hs

n. ∗ (SsT (Xs./(SsHs
n)))

./(SsT 1D×L + λ11×L) (8)

with .∗ and ./ denoting element-wise multiplication and divi-
sion, respectively. To increase the sparseness ofHs, elements
of Hs, which are less than threshold, are rounded to zero.

By using the activity and the set of target basis which is
parallel toSs, the converted spectral features are constructed.

X̂t = (StHs) (9)

3. Experimental Results

3.1. Experimental Conditions

The proposed method was evaluated on word-based VC for one
person with an articulation disorder. We recorded 432 utter-
ances (216 words, repeating each two times) included in the
ATR Japanese speech database [17]. The speech signals were
sampled at 12 kHz and windowed with a 25-msec Hamming
window every 10 msec. A physically unimpaired Japanese male
in the ATR Japanese speech database was chosen as a target
speaker. Two hundred sixteen utterances were used for train-
ing, and the other 216 utterances were used for the test. The
numbers of dimensions of source and target features are, 2,565
and 513. The number of bases of source and target dictionary
is 64,467. We chose 10,000 nearest bases from dictionary by
locality constraint.

We compared our NMF-based VC to conventional GMM-
based VC. In GMM-based VC, the 1st through 24th cepstrum
coefficients extracted by STRAIGHT were used as source and
target features.
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(a) Converted by GMM-based VC
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(b) Converted by NMF-based VC without locality
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(c) Converted by NMF-based VC with 100 nearest bases
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(d) Converted by NMF-based VC with 1,000 nearest bases
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(e) Converted by NMF-based VC with 10,000 nearest bases

Figure 5: Examples of converted spectrograms for “i k i oi”
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3.2. Subjective Evaluation

We conducted subjective evaluation on 3 topics. A total of 10
Japanese speakers took part in the test using headphones. For
the “listening intelligibility” evaluation, we performed a MOS
(Mean Opinion Score) test [18]. The opinion score was set
to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor,
1: bad). Thirty-eight words, which are difficult for a per-
son with an articulation disorder to utter, were evaluated. The
subjects were asked about the listening intelligibility in the
articulation-disordered voice, the NMF-based converted voice,
and the GMM-based converted voice. Each voice uttered by a
physically unimpaired person was presented as a reference of 5
points on the MOS test.

Fifty words were converted using NMF-based VC and
GMM-based VC for the following evaluations. On the “similar-
ity” evaluation, the XAB test was carried out. In the XAB test,
each subject listened to the articulation disordered voice. Then
the subject listened to the voice converted by the two methods
and selected which sample sounded most similar to the articula-
tion disordered voice. On the “naturalness” evaluation, a paired
comparison test was carried out, where each subject listened
to pairs of speech converted by the two methods and selected
which sample sounded more natural.

3.3. Results and Discussion

Fig. 5 shows examples of converted spectrograms. Using
GMM-based conversion, the area labeled “oi” becomes unclear
compared to NMF-based conversion. This might be because
unexpected mapping during the GMM-based VC degraded the
conversion performance. Because NMF-based VC converts
consonants only, the same area is relatively clear and similar to
the labeled “oi” area in Fig. 4(a). In the spectrogram converted
by NMF-based VC without locality, there are some misconver-
sions in the black circled area. This is because there is some
mixing of the vowel and consonant spectra. By using local con-
strained NMF, such misconversions are eliminated. Also, in
comparison between (d) and (e) in Fig. 5, the converted voice
using 10,000 nearest bases is more clear than that using 1,000
nearest bases, especially the areas labeled “i” and “oi”. For this
reason, locality-constraint is useful to the combined dictionary,
however, using too few bases degrades conversion performance.
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Figure 6: Results of MOS test on listening intelligibility

Fig. 6 shows the results of the MOS test for listening intelli-
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Figure 7: Preference scores for the similarity to the source
speaker and naturalness

gibility. The error bars show a 95% confidence score. As shown
in Fig. 6, NMF-based VC and GMM-based VC can improve
listening intelligibility. NMF-based VC obtained a higher score
than GMM-based VC. This is because GMM-based VC creates
conversion noise. NMF-based VC also creates some conversion
noise, but it is less than that created by GMM-based VC.

Fig. 7 shows the preference score on the similarity to the
source speaker and naturalness of the converted voice. The error
bars show a 95% confidence score. NMF-based VC got a higher
score than GMM-based conversion on similarity because NMF-
based conversion used a combined dictionary. NMF-based VC
also got a higher score than GMM-based conversion on natural-
ness.

4. Conclusions
We proposed a spectral conversion method based on NMF for
a voice with an articulation disorder. Experimental results
demonstrated that our VC method can improve the listening in-
telligibility of words uttered by a person with an articulation dis-
order. Moreover, compared to conventional GMM-based VC,
NMF-based VC can preserve the individuality of the source
speaker’s voice and the naturalness of the voice. In this study,
there was only one subject person, so in future experiments, we
will increase the number of subjects and further examine the
effectiveness of our method.
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Abstract
Ambient Assisted Living aims at providing assistance by allow-
ing people with special needs to perform tasks which they have
increasing difficulty with and to provide reassurance through
surveillance in order to detect distress and accidental falls.
Aged people are among the ones who might benefit from ad-
vances in ICT to live as long as possible in their own home.
Voice-base smart home is a promising way to provide AAL, but
even mature technologies must be evaluated from the perspec-
tive of its potential beneficiaries. In this paper, we investigate
which characteristics of the ageing voice that challenge a state
of the art ASR system. Though in the literature, chronological
age is retained as the sole factor predicting decrease in perfor-
mance, we show that degree of loss of autonomy is even more
correlated to ASR performance.
Index Terms: Ambient Assisted Living (AAL), Dependency,
Elderly speech, Voice command

1. INTRODUCTION
With advances in medicine, life expectancy has increased.
However, this phenomenon coupled with a low birthrate has led
to an ageing population in industrialised countries. To help el-
derly people to live as long as possible in their home, solutions
have been developed based on robotics, automation, cognitive
science, and computer networks. These solutions are being de-
veloped to compensate their possible physical or mental decline
to keep them with a good degree of autonomy. The aim is to
provide assistance by allowing them to perform tasks which
they have increasing difficulty with and to provide reassurance
through surveillance in order to detect distress and accidental
falls. Such a system must allow independence of elderly while
facilitating social contact, with a major impact on well-being
and health. In addition, it helps caregivers and reassure rela-
tives. However, technological solutions must be able to adapt to
the needs and the specific capacities of this population. Indeed,
elderly are often confused by complex interfaces of devices.
Therefore, the usual interfaces (remote controls, mice or key-
boards) must be complemented by more accessible and natural
interfaces such as a system of Automatic Speech Recognition
(ASR) [1].

In this context, the CIRDO project1 wherein the authors
take part aims to promote autonomy and support of elderly peo-
ple by caregivers through a social inclusion product. The ob-
jective of the project is to integrate an ASR system into this
product to perform detection of distress situations, distress calls
and voice commands. Such kind of voice based interaction
is an emerging feature of many AAL related research projects
[2, 3, 4, 5, 6] but this remains a very challenging area due to the

1http://liris.cnrs.fr/cirdo/

atypical nature of the application (distant speech, aged people,
noise, uncontrolled area, multi-speaker, etc.) [7].

One of the main challenges in this domain is to make sure
that the ASR performance will be good enough to deliver a
high quality voice order recognition system. This is a fear of
the elderly population who are inclined to switch the system
off if it has difficulties in understanding them. Most of the
deployed ASR systems have reached a very good recognition
rate in close, noise free talking, but their performances were
rarely assessed with aged or children voice. A few studies com-
pared ageing voice vs. non-ageing voice on ASR performance
[8, 9, 10, 11], but their fields was quite far from our topic of
home automation commands recognition. Moreover, an issue
for our work was the non-existence of a speech corpus in French
containing distress signals and automation commands.

The purpose of this study was to determine the impact of
ageing voice on the ASR system performance and to find out
which people characteristics might serve to predict ASR per-
formance. The method we used is detailed in Section 3 after
having discussed the related work in Section 2. Then the results
of the evaluation are presented in Section 4 and an outlook on
further work is given Section 5.

2. RELATED WORK
The perception of voice alteration with age has been the subject
of many studies [12, 13, 14, 15, 16]. Elderly speakers are char-
acterized by tremors, hesitations, imprecise production of con-
sonants, broken voice, and slower articulation [13]. Regarding
women, the changes seem partly due to an increase of the vo-
cal cords mass due to some changing levels of certain hormones
[17]. Regarding men, perception of gasp come from an incom-
plete closure of the vocal cords that would be compensated by
an increasing tension in larynx [18]. From the anatomical point
of view, some studies have shown age-related degeneration with
atrophy of vocal cords, calcification of laryngeal cartilages, and
changes in muscles of larynx [19, 20].

Some studies have shown a significant increase in the stan-
dard deviation measures of the fundamental frequency of el-
derly, both men and women [21, 16, 15]. Stability of the fun-
damental frequency (F0) is reduced in elderly voice [12] and
is associated with variability in the peak-to-peak amplitude of
speech signal. Hesitations and gasping in pathological voices
have been associated with increased noise in the speech signal
driven by an aperiodic vibration of the vocal cords [22, 23].
Some measures of the ratio between noise energy and harmon-
ics have quantified this phenomenon by comparing older and
younger speakers [21, 24]. Incomplete closure of vocal cords
was observed during vocalisation [14]. The study cited above
[12] confirms fundamental frequency instabilities and the in-
creasing noise on both sexes for healthy people with an average
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age of 70. These studies show that aged voice presents a much
greater variability than typical voice. Ability of state-of-the-
art ASR systems to handle this kind of population can thus be
questioned.

A more general study of Gorham-Rowan and Laures-Gore
[12] highlights the effects of ageing on the speech utterance and
the consequences on the speech recognition. The experiments
carried out in automatic speech recognition have shown perfor-
mance degradation for “atypical” population such as children
or elderly people [25, 10, 26] and have shown the interests of
an adaptation to the target populations [27, 26]. Speech recog-
nition adapted to the voice of elderly people is still an under-
explored area. The relevant languages are mainly English [10]
and Asian languages such as Japanese [8]. A very interest-
ing study [10] used some recordings of speeches delivered in
the Supreme Court of the United States over a decade. These
recordings are particularly interesting because they were used
to study the evolution of recognition performance on the same
person depending on his age over 7-8 years. These studies show
that the performance of recognition systems decreases steadily
with age, and that a special adaptation to each speaker can get
closer to the scores obtained from the youngest speakers with-
out adaptation. The implicit consequence is that the recogni-
tion system is adapted to a single speaker. To make the system
adapted to the person, Renouard et al. [28] proposed to use the
recognized words to adapt online the recognition models. Pro-
posed in the context of home assistance, this research does not
appear to have been pursued.

From an applicative point of view in the smart home
context, speech recognition has been mainly implemented
marginally in the field of voice commands in English. Indeed,
most current studies use conventional sensors (presence sensor,
door contact, etc.) and tactile interfaces (remote controls, hand-
set, touch-screens) more reliable but less natural, offering fewer
opportunities for interaction and comfort (for example: need to
walk to reach the remote device). Among the advances in the
field of voice controlled devices, a study conducted by Ander-
son [27] showed that a voice interface which is adapted (mod-
els acquired on 300 elderly speakers) allows to make voice re-
quests on computer with the same performance than a query
typed at the keyboard. This study has also revealed that only
2 of the 37 participants preferred the keyboard compared to the
voice interface. In the same field, Kumiko [29] proposed a com-
puter voice command interface that takes into account the possi-
ble sources of error (duration, intensity, vocabulary) to improve
performance and feedback. While Interactive Voice Response
is a pervasive component of today’s telephone communication,
some of which take into account the different voice population
[30], voice control in smart home is clearly in its infancy. A
large number of issues, such as noisy environment, number of
sound sources (for example: several people), vocabulary cover-
age, coverage of speakers, etc. still need to be addressed [7].
Recently, Moir and Filho [31] proposed a low-coverage system
using adaptive filters for a good recognition of keywords. But
this research remains still exploratory.

To the best of our knowledge, no application of voice con-
trol in smart home has explicitly considered the problem of
voice recognition of French elderly speakers, even though ma-
jor advances in terms of ergonomics, safety and data acquisi-
tion with high semantic value can be made by this modality.
From this short literature review, it can be emphasized that no
study had considered French aged voice in smart home condi-
tion. Moreover, most studies considered the chronological age
as global explanatory factor while many other effects can also

be responsible for ASR performance degradation as raised by
[11]. There is thus no certainty that age can predict the relia-
bility of a voice-based control system. That is why our study
includes an evaluation from the dependence perspective.

3. METHOD
To assess the impact of the ageing voice on ASR performance,
we started by acquiring a corpus targeted to the elderly popula-
tion. From this corpus and a non-aged one, the first task was to
identify the most problematic phonemes and to check whether
standard adaptation can be employed to reduce the discrepancy
between aged and non-aged speakers at phoneme level. Once
adapted, the second task was to assess whether measures other
than strictly chronological age can explain ASR performance
degradation.

3.1. Corpus collection

The corpus collection was performed sporadically from 2009
to 2012 in collaboration with a rehabilitation centre, volunteers
and a nursing home. Targeted speakers were persons aged of
more than 60 years old, able to read and with no mental disorder
or pathologies altering the voice. The recording was done with
a single microphone positioned about 30 cm from the speaker’s
mouth. Most speakers were sat, but some were in a wheelchair
or laying in a bed. The recording was done using a computer
and a home made software to prompt sentences to be read by the
speaker and to record the utterances using voice activity detec-
tion. Given the targeted application (in-home voice commands
and distress calls) the participants were requested to read a list
of short distress/home automation and casual sentences such as
Aidez-moi (Help me) or Il fait beau (It’s sunny). Based on [32],
who interviewed elderly people in nursing homes to identify
and describe what situations of distress they could have experi-
enced, we created a list of home automation orders the person
could utter during a distress situation to request for assistance.
Ten samples of each kind are given in Table 1.

The non-aged corpus was previously recorded in our labo-
ratory in 2004 and was complemented in 2013 with sentences
based on [32]. The procedure was similar to the aged corpus
acquisition.

This aged and non-aged corpus is called the AD corpus
(Anodin-Détresse: anodin means colloquial and détresse means
distress).

Finally, another aged corpus, the ERES38 corpus (Entre-
tiens RESidences 38: Entretiens means interviews) was ac-
quired for model adaptation purpose. This corpus was recorded
in 2011 in the living place of the person. During the interviews,
we requested each speaker to read a text but they were also
asked to talk freely about their life. The text was an article
about gardening created by the experimenters in order to target
phoneme issues reported in [9, 33].

All the corpora were annotated at the sentence level using
the Transcriber software.

3.2. ASR system

The ASR toolkit chosen in our study was Sphinx3 [34]. This
decoder used a context-dependent acoustic model with 3-state
left-to-right HMM. The acoustic vectors are composed of 13
MFCC coefficients, the delta and the delta delta of each co-
efficient. This HMM-based context-dependent acoustic model
was trained on the BREF120 corpus [35] which is composed
of about 100 hours of annotated speech from 120 non-elderly
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Sample Distress Sentence Home Automation Order Casual Sentence
1 Aidez-moi ! e-lio appelle le samu ! Bonjour madame !
2 Au secours ! e-lio appelle les pompiers ! Ça va très bien.
4 Je me sens mal ! e-lio appelle les secours ! Ce livre est intéressant.
5 Je suis tombé ! e-lio appelle un docteur ! Il fait soleil.
3 Du secours s’il vous plaît ! e-lio appelle une ambulance ! J’ai ouvert la porte.
6 Je ne peux plus bouger ! e-lio appelle une infirmière ! Je dois prendre mon médicament !
7 Je ne suis pas bien ! e-lio appelle ma fille ! J’allume la lumière !
8 Je suis blessé ! e-lio appelle mon fils ! Je me suis endormi tout de suite !
9 Je ne peux pas me relever ! e-lio tu peux téléphoner au samu ? Le café est brûlant !
10 Ma jambe ne me porte plus ! e-lio il faut appeler les secours ! Où sont mes lunettes ?

Table 1: Examples of sentences of the AD corpus

French speakers. We called it the generic acoustic model.

3.3. Language model

A general language model (LM) was estimated from the French
Gigaword corpus which is a archive of newswire text data that
has been acquired over several years by the Linguistic Data
Consortium (LDC) at the University of Pennsylvania2. It was
1-gram with 11018 words. Moreover, to reduce the linguistic
variability, a 3-gram domain language model was learned from
the sentences used during the corpus collection described in
Section 3.1, with 88 1-gram, 193 2-gram and 223 3-gram mod-
els. Finally, the language model was a 3-gram-type which re-
sults from the combination of the general language model (with
a 10% weight) and the domain one (with 90% weight). This
combination has been shown as leading to the best WER for
domain specific application [36]. The interest of such combina-
tion is to bias the recognition towards the domain LM but when
the speaker deviates from the domain, the general LM makes it
possible to correctly recognise the utterances.

3.4. Word error rate and phoneme matching

The simplest and most common way to evaluate ASR perfor-
mances is to compute the Word Error Rate (WER). The WER
is computed by first aligning the output (the decoded speech)
with the reference (i.e., the ground truth) and then applying
WER = I+D+S

N
where I , D and S is the number of inser-

tions, deletion and substitution of words and N is the number
of words in the reference.

Though this measure was used in many related studies
[8, 10, 11], it does not indicate which specific phonemes play a
role in the ASR performance degradation. To do so, the anno-
tation should be performed at the phoneme level. However, this
is a very laborious and time-consuming task which furthermore
requires a good level of expert agreement. That is why we anal-
ysed the results of the forced alignments. The forced alignment
algorithm that was used is the one of Sphinx3.

Forced alignment consists in finding the boundaries of
phonemes in an utterance knowing the uttered sentence. This
sentence is mapped in phoneme (using a dictionary) which is
used to constrain an optimal alignment between the acoustic
model and the speech utterance. The forced alignment scores
are for each signal segment within a boundary, the likelihood of
belonging to a phoneme model. This score can be interpreted
as a proximity to the “standard” pronunciation, modelled by the

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2006T17

Unvoiced Plosive p, t, k
Voiced Plosive b, d, g
Nasal Consonant m, n, N, ñ
Liquid Consonant l
Unvoiced Fricative f, s, S
Voiced Fricative v, z, Z, R
Front Vowel i, e, E
Central Vowel y, ø, œ, @
Back Vowel u, o, O
Open Vowel a, A
Nasal Vowel ẽ, ã, õ, œ̃
Semi-Vowel 4, j, w

Table 2: Phoneme categories (IPA symbols)

generic acoustic model. The differences in scores of phoneme
categories between the aged group and the non-aged group al-
low to identify which phonemes are the most difficult for the
ASR system. We are not aware of any study having used such
method to assess ASR performances.

Phonemes were grouped according to their highest level
catgories as shown in table 2.

3.5. Adaptation with MLLR

Once the phonemes are identified, the most common method
to overcome the ASR limitation is to apply speaker adaptation.
Speaker adaptation consists in generating a new acoustic model
from a generic one and some new annotated speech in limited
quantity. One of the most popular technique is to apply the
Maximum Likelihood Linear Regression (MLLR) which is par-
ticularly adapted when a limited amount of data per class is
available. MLLR is an adaptation technique that uses small
amounts of data to train a linear transform which warps the
Gaussian means so as to maximize the likelihood of the data.
The principle is that acoustically close classes are grouped and
transformed together.

3.6. Assessing the level of autonomy

Despite the acoustic adaptation, there might be a disparity be-
tween the WERs of the elderly group even in aged people of
the same age category. Therefore, we investigated other crite-
ria and focused on elderly dependence. As reference, we used
a French national test which is daily used in assessing the de-
gree of loss of autonomy: the AGGIR (Autonomie Gérontolo-
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gie Groupes Iso-Ressources) grid3. The degree of autonomy
loss is evaluated in terms of physical and cognitive decline. Ac-
cording to the result of this test, the person can receive financial
support: the Personalized Allocation of Autonomy (APA). The
evaluation is done using 17 variables. Ten variables refer to the
loss of physical and cognitive autonomy: coherence, orienta-
tion, washing, feeding, disposal, transfers (to rise, to lie down,
to sit down), internal displacement, external displacement and
remote communication. Seven variables refer to the loss of do-
mestic and social autonomy: personal management of budget
and possessions, cooking, cleaning, transporting, purchasing,
treatment monitoring and past time activities. Each variable
is coded with A (independent), B (partially dependent) and C
(totally dependent). The GIR (Iso-Ressources Group) score is
computed from the variables to classify the person in one of the
six groups: GIR 1 (total dependence) to GIR 6 (total autonomy).

4. RESULTS
4.1. Collected Corpus

4.1.1. The AD80 French test corpus

The AD corpus (cf. 3.1) was acquired from 95 speakers (36 men
and 59 women) which are divided into two groups: the elderly
group composed of 43 speakers (11 men and 32 women), 62 to
94 years old, with 2796 distress and home automation sentences
for a duration of 1 hour 5 minutes, and 3006 casual sentences
for a duration of 1 hour 6 minutes, and the non-elderly group
composed of 52 speakers, 18 to 64 years old, with 3903 dis-
tress and home automation sentences for a duration of 1 hour
18 minutes, and 3897 casual sentences for a duration of 1 hour
12 minutes.

We fixed the limit of the non-aged group at 65 years old, but
we recorded 2 people aged 62 and 63 years old with autonomy
loss, looking very aged physically and living in nursing home.
Thus we included this two persons, as exceptions, in the aged
group.

For the 43 speakers of the aged AD corpus, a GIR score was
obtained after clinicians filled the AGGIR grid.

Finally, the AD corpus is made up of 13,602 annotated sen-
tences, with 4 hours and 42 minutes of recording.

4.1.2. Collection of the training ERES38 corpus

The ERES38 (cf. 3.1) corpus was acquired from 22 elderly peo-
ple (14 women and 8 men) between 68 and 98 years old. The
corpus included 48 minutes of read speeches (around 2 minutes
per speaker) and 17 hours of interviews. The speakers lived in
specialized institutes, such as nursing homes and were cogni-
tively intact without severe disabilities.

4.2. Phoneme distance between aged and non-aged voice

When performing ASR using the generic acoustic model on the
distress/home automation sentences of the AD corpus, we ob-
tained an average WER of 9.07% for the non-elderly group, and
an average WER of 43.47% for the elderly group. Thus, we
observed a significant performance degradation of ASR for el-
derly speech, with an absolute difference of 34.40%. Figure 1
represents the WER according to the chronological age for both
groups. It shows that the WER is globally higher for elderly
group as previous studies showed [8, 10, 11]. However, it can
also be seen that the variability between speakers also increases

3http://vosdroits.service-public.fr/F1229.xhtml

with the age. For instance, some 83 years old speakers have
their WER ranging from 13.6% to 80.2%. Standard deviation is
6% for the non-elderly group and 17.27% for the elderly group.
In other words, the WER is far less predictable in the elderly
group than in the non-elderly group. Consequently, we have to
deal with the fact that a speech recognition with such a system
can work very well with some of the elderly speakers, and very
badly with others.
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Figure 1: WER as a function of age for aged and non-aged
groups

The forced alignment scores on both AD groups non-
elderly and elderly with the generic acoustic model are pre-
sented in Figure 2 based on phonemic categories.
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Figure 2: Forced alignment scores by phonemes categories be-
fore adaptation

The relative differences of forced alignment scores ob-
served between both groups led to sort the phoneme categories
in descending order of differences: nasal vowels (-100,34%),
voiced plosives (-56,55%), unvoiced fricatives (-50,48%), un-
voiced plosives (-44,05%), nasal consonants (-41,03%), open
vowels (-37,12%), central vowels (-34,80%), voiced fricatives
(-31,30%), back vowels (-29,26%), semi-vowels (-29,18%), liq-
uids (-19,99%), and front vowels (-11,89%). The repartition of
French phonemes inside the different groups are presented in
Table 2.

For the elderly group, the alignment scores are lower than
those obtained for the non-elderly group especially for plo-
sives and nasal vowels. Based on the relative differences, the
phoneme categories most affected for elderly group are nasal
vowels, plosive consonants, unvoiced fricatives and nasal con-
sonants.
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4.3. Impact of the acoustic adaptation on ASR performance
with aged voice
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Figure 3: WER on aged group before and after adaptation

Figure 3 shows that using the MLLR adapted acoustic
model was able to reduce the WER significantly for all speak-
ers of the AD corpus. With the global MLLR adaptation us-
ing ERES38, the average WER was 14.52%. Compared to the
43.47% WER without adaptation (see Section 4.2), the abso-
lute difference was -28.95%. Furthermore, the speaker with the
worst performance had his error rate reduced from 80.2% to
44.9%, and the speaker with the best performance had his er-
ror rate reduced from 9% to 1.8%. Also, the standard deviation
was reduced from 17.27% to 10.34%, showing a reduction of
the variability between the speakers.

A comparison between the forced alignment scores ob-
tained for non-elderly without adaptation and for elderly after
adaptation using the ERES38 corpus is shown in Figure 4. On
the whole, the scores for the elderly after adaptation are better
than those of non-elderly with the generic acoustical model.
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Figure 4: Forced alignment scores by phonemes categories for
non-elderly with the generic acoustical model and for elderly
after adaptation

Indeed, the use of an acoustical model adapted to elderly
people reduces the mismatching of phonemes. The alignment
scores of the adapted model presented in Figure 4 show that
the average distance has reduced below the non-aged one for all
phonemes except for unvoiced fricatives and nasal vowels.

From an applicative point of view, this test shows that
we can use a database of elderly speech in MLLR adaptation
with speakers which are different from the test database. Even
though the size of the corpus is small, we have a significant
improvement of WER. Furthermore, this demonstrates that the
voices of ageing people have common characteristics.

4.4. Influence of elderly dependence on ASR system

Despite the acoustic adaptation, there is a great variability be-
tween the WERs of the elderly group. Therefore, we inves-
tigated to establish if the level of elderly dependence can be
an indicator of the ASR performance for the elderly group.
Figure 5 shows a box-and-whisker diagram of the WER from
MLLR adaptation as a function of the elderly dependence. Four
speakers were in GIR 2, two speakers were in GIR 3, 21 speak-
ers were in GIR 4, one speaker was in GIR 5 and 15 speakers
were in GIR 6. No speaker was represented in GIR 1. Due to
the small number of speakers in GIR 2, GIR 3 and GIR 5, we
merged GIR 2 with GIR 3 and GIR 4 with GIR 5.
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Figure 5: WER as a function of levels of dependence

From Figure 5 it can be seen that WERs are different ac-
cording to the GIR category. Indeed, the WER averages for
GIR 2-3, GIR 4-5 and GIR 6 are respectively 25.2%, 13.2%
and 12.2%, and the WER standard deviations are respectively
16.8%, 8.4% and 7.6%. Then, we performed an ANOVA test
on the groups GIR 2-3, GIR 4-5 and GIR 6. From this test,
the GIR score have a significant effect on WER (F (2, 40) =
4.3; p < 0.05%).

We conducted a Bonferroni post-hoc analysis to character-
ize which groups were significantly different from other groups.
The post-hoc test highlighted that there was a significant differ-
ence between the GIR 2-3 group and both groups GIR 4-5 and
GIR 6, while there is no significant difference between GIR 4-5
and GIR-6.

5. CONCLUSION
The paper presents our study on the behavior of an ASR system
with elderly voices. Given the absence of a corpus containing
the voice of elderly in French language usable for testing ASR
system, we recorded the AD corpus. From this corpus, we ob-
served an increase of the average WER of the ASR system for
elderly people, with an absolute difference between non-elderly
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and elderly voice of 34.4%. With forced alignment, we ana-
lyzed which phonemes for elderly speech were posing the most
problems to ASR systems. These results allowed us to proceed
to the recording of the ERES38 corpus, allowing us to adapt the
generic acoustic model to the voice of elderly people through
the MLLR adaptation method. The global MLLR adaptation
was interesting because with less than one hour of recordings
from speakers different from the test speakers, we obtained a
WER close to the case of recognition with the generic acoustic
model on non-elderly group, with a WER of 14.53%, against
43.47% before adaptation. Moreover, we showed that inside
the elderly group, the WER was not correlated with the age but
could be correlated with the level of dependence due to a gen-
eral physical degradation. The continuation of our work would
be to show how the different parameters of the AGGIR grid are
correlated to the WER. Therefore, predicting the ASR behavior
would allow in facilitating the use of these new technologies in
the daily life of the dependent elderly people.
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Abstract
We present a visual aid for the hearing impaired to

enable access to internet videos. The visual tool is in the
form of a time synchronized lip movement corresponding
to the speech in the video which is embedded in the orig-
inal internet video. Conventionally, access to the audio
or speech, in a video, by the hearing impaired is provided
by means of either text subtitles or sign language gestures
by an interpreter. The proposed tool would be beneficial,
especially in situations where such aids are not readily
available or generating such aids is difficult. We have
conducted a number experiments to determine the feasi-
bility and usefulness of the proposed visual aid.
Index Terms: Lip movement synthesis, Phone recogni-
tion, resource deficient languages

1. Introduction
As per World Health Organization, over 360 million peo-
ple which account for 5% of the world’s total popula-
tion suffer from hearing loss and a significant majority
of them live in developing nations. Moreover, one third
of people over the age of 65 years, especially from South
Asia, Asia Pacific and Sub-Saharan Africa are affected
by disabling hearing loss [1]. A person with hearing im-
pairment, especially acquired deafness in adulthood, can
with some training interpret spoken speech by observing
lip movements corresponding to the spoken speech.

Lip reading, also known as speech-reading in litera-
ture, allows access to speech through visual reading of
the movement of the lips, face and tongue in the absence
of audible sound. Lip reading also makes use of the in-
formation associated with the context, the knowledge of
the language, and also the residual hearing of the person
[2]. Hearing impairment can prove to be a major hand-
icap especially when a person wishes to understand an
internet video while viewing it. Any tool that can make
video assessible is useful for the hearing impaired. This
motivates our work in developing a tool that allows for
viewing a video without having to actually hear the audio
track of the video.

Text based subtitles is one way by which a person
with hearing loss interprets what is being spoken in a
video. However, text subtitles are not always readily avail-
able; especially in a country like India where subtitling is

not mandated by law unlike in some of the developed na-
tions (example [3, 4]). Moreover, manual generation of
subtitles is a long drawn, laborious and an expensive pro-
cess [5]. An alternative is to automatically generate text
subtitles using an Automatic Speech Recognition (ASR)
engine, but non-availability of ASR engines for a resource
deficient language [6] hinders generation of accurate sub-
titles, additionally, generating subtitles in the script of the
spoken language would be another impediment.

IBM’s SiSi (Say It, Sign It) is an automatic sign lan-
guage generator for spoken audio. SiSi uses a speech
recognition module that converts the spoken speech into
text; the text is interpreted into gestures, that are used to
animate an avatar which signs in British Sign Language
[7]. SiSi largely depends on the accuracy of recognition
of audio. eSign project was primarily designed to help
interpret textual internet content using sign language. eS-
ign synthesizes the signing gestures using Signing Ges-
ture Markup Language (SiGML), along with information
regarding speed and viewpoint [8]. However, there are
about 200 different sign languages, each with a vocabu-
lary of considerable size. Building an automated system
that would generate sign language interpretation of au-
dio would then be complex owing to not only the non-
availability of an efficient ASR engine but also the diffi-
culty associated in translation of generated text, to sign
language gestures for resource deficient languages.

In this paper, we propose a tool for visual subtitling
which is largely based on associating a visual lip move-
ment corresponding to the audio track of the video. The
essential idea is based on the fact that recognition accu-
racies of audio, even for resource deficient languages is
higher in viseme space than in the phoneme space. The
rest of the paper is organized as follows: We describe
the process of generation of visemes in Section 2 and de-
scribe the experimental work and evaluation of the pro-
posed tool in Section 3 and conclude in Section 4.

2. Generation of Viseme Sequence

Visual subtitles are essentially a time sequence of visemes
corresponding to and in sync with the speech in a given
video. Visual subtitles could be in lieu of or in addition to
text subtitles, wherein the lip movement for a particular
speech will be displayed. It is anticipated that, the user
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Figure 1: Overview of Visual Subtitling.

will be able to view the visual subtitles embedded with
the original video. Figure 1 represents the proposed the
tool. As seen in Figure 1 audio is first extracted from the
video. The spoken speech is recognized using a phoneme
recognizer and then mapped to the corresponding viseme.
Visual subtitles are synthesized using MPEG-4 FAPs for
mouth and tongue as defined in [9].

Note 1 for the purpose of demonstration the videos cho-
sen are predominantly speech audio content.

2.1. Visemes and MPEG-4 FAPs

Viseme is the basic unit of mouth movement that repre-
sents a phoneme or a group of phonemes in the visual
domain. We use the standard set of 22 visemes [10]. It
is a many phonemes to one viseme mapping with several
different phonemes mapped to the same viseme owing to
the fact that the lip position for different phonemes is the
same; for example the phones /k/ and /g/ correspond to
the viseme k or the phonemes /p/, /b/ and /m/ correspond
to the viseme p. We first created a mapping between the
standard 22 visemes and the Hindi phoneme set as shown
in 1 (shows the first 11 visemes only).

Note 2 The mapping was done so as to include both Hindi
and English phonemes to be able to cater to mixed lan-
guage usage.

It is desirable to have the lip movement as natural as pos-
sible for the user to be able to comfortably understand the
audio. MPEG-4 FAPs for mouth and tongue for a given
viseme are sufficient to visualize the spoken phoneme
completely as can be seen in Figure 2. For each of the
22 visemes, the corresponding FAPs were computed in
the form of (x, y) coordinates. For natural visualization
of the lip movement, transition between two consequent

Table 1: Phoneme to Viseme mapping rule.
Phoneme Viseme
/sil/ Viseme0
/ae/, /ax/, /ah/, /E/, /EM/, /ai/, /a/ Viseme1
/aa/, /A/, /ah/, /AM/ Viseme2
/ao/, /O/, /au/ Viseme3
/ey/, /eh/, /uh/, /e/, /eh/ Viseme4
/er/, /axr/ Viseme5
/y/, /iy/, /ih/, /ix/, /I/, /IM/, /i/ Viseme6
/w/, /uw/, /U/, /UM, /ux/, /u/, /uh/ Viseme7
/ow/, /o/ Viseme8
/aw/ Viseme9
/oy/ Viseme10
/ay/ Viseme11

Figure 2: Viseme and MPEG-4 FAPs for Mouth and
Tongue.

visemes was simulated by means of a linear interpolation.
So in some sense we had intermediate visemes generated.

HTK 3.4 ASR [11] was used for phoneme recogni-
tion. The recognizer was trained on annotated Hindi data
from 100 native speakers of Hindi; each of the speaker
spoke 10 sentences each. The HTK 3.4 recognizer per-
formed with 70% correctness on viseme classes when
used in the free decoding mode.

Note 3 The recognition improved by upward of 10% for
viseme recognition compared to phoneme recognition.

Manual verification of phone sequence and duration
is done to ensure that the lip movement generated by the
viseme sequence is a representation of the speech.

A visual subtitle browser plug-in allows the user to
view the internet video along with the lip movements
corresponding to the speech in the form of a viseme se-
quence. As stated earlier, given the context, a person
with hearing loss would be able to understand the spo-
ken speech from the lip movements, we believe that the
video would set the context.
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Figure 3: A snapshot of the FAP, animated image and real
image based visemes.

Figure 4: Sample snapshot of a video with visual subtitle.

3. Experimental Results and Discussion
Figure 3. shows the snapshots of FAPs, animated viseme
and real viseme that were used to generate the videos.
Several videos available on the internet were selected and
visual subtitles were generated [12] as mentioned in the
earlier sections. While a mix of English and Hindi videos
were selected and visual subtitles generated (a snapshot
of the video with FAP is shown in Figure 4), the evalua-
tion of the usefulness of the tool was tested on only the
English videos because the subjects who evaluated the
videos for visual titles were trained to lip read in English.

3.1. Evaluation

All the evaluation results are for English videos only be-
cause the subjects were trained in Indian English lip read-
ing. We found access to people who are familiar with lip
reading in a language other than English was hard to find.
The participants were asked to lip read a video of ten nat-
urally recorded sentences to establish a baseline. Only
the mouth portion of the face was used in the baseline
videos.

Evaluation was done under different experimental se-
tups, namely,

• Visual subtitles generated using three different vi-
sual features, namely, (a) MPEG-4 FAPs, (b) ani-
mated viseme images and and (c) real viseme im-
ages.

• Visual subtitles with and without the context of video.

• Videos played at different rates, namely, played at
their original speed and half the speed.

• Videos comprised of animated clip, classroom lec-
ture, dias/conference lecture.

The participants’ understanding based on visual ob-
servation of the visual subtitles was evaluated in terms of
number of words correctly recognized. In summary, vi-
sual subtitles were better understood under the following
conditions (a) with the context of video, (b) when played
at half the original speed and (c) when generated with real
viseme images

Note 4 MPEG-4 standard does not define FAPs for teeth,
which play a significant role in lip reading, hence this
aspect needs to be considered during the generation of
Visual subtitles using MPEG-4 FAPs.

4. Conclusions
Visual subtitles are essentially the lip movements corre-
sponding to the audio track in a video. Displaying vi-
sual subtitles along with the video would augment the
understanding of the content of a video for a person with
hearing impairment. Although text subtitles and sign lan-
guage gesture display can be thought of as alternatives,
generating them manually is a tedious task. Automatic
generation of text subtitles and sign language gestures for
a particular language using ASRs, would require robust
ASRs with rich speech corpus. However, lip movements
are less language specific, that is one can move from one
language to another by modifying the phoneme-visemes
mapping. Given these advantages, automatic generation
of lip movement from audio emerges as an encouraging
solution, especially for resource deficient languages like
Hindi. However, automatic generation of lip movements
will still be limited by the ASR performance under noisy
and with background music. We are also experimenting
with other methods like optical flows [13] for generation
of transition between visemes.
Acknowledgements: We would like to express our sin-
cere gratitude to all the participants whom we would not
like to name. Our thanks are due to Mrs. Alpa Shah for
participating and making possible the evaluation of visual
subtitles.
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Abstract
An attractive approach to enable the use of vocal interfaces by
impaired users with dysarthric speech is the use of a system
which learns from the end-user. To enable such technology, it is
imperative that the learning is fast to reduce the time spent train-
ing the interface. In this paper we investigate to what extend
various machine learning techniques are able to learn from only
a single or a few spoken training samples. Additionally, we ex-
plore whether these techniques can be combined through boost-
ing to improve the performance. Our evaluations on a small,
but highly realistic home automation database reveal that non-
negative matrix factorization seems best suited for fast learning
and that some of the boosting approaches can indeed improve
performance, especially for small amounts of training data.
Index Terms: vocal user interface, self-taught learning, ma-
chine learning, boosting

1. Introduction
Vocal user interfaces (VUIs) allow us to control a wide range
of appliances and devices such as computers, smart phones, car
navigation and other domestic devices and environments. While
for most the use of a VUI is just a luxury, for individuals with a
physical disability using a VUI can greatly improve their inde-
pendence and quality of living, because for them operating and
controlling devices would often require exhausting physical ef-
fort [1].

Conventional speech recognition systems employed in
VUIs are trained by the developer using vast amounts of speech
material. While offering impressive performances for users
whose word choice, grammar and speech conforms to the train-
ing material used, performance suffers in the presence of ac-
cented, dialectical and disordered speech. A possible solution,
adaptation of existing acoustic models, may not suffice for se-
vere speech pathologies [2, 3, 4, 5, 6].

The goal of this research is to explore methods which allow
training speech commands by the end-user himself. This way,
the acoustic models of the VUI are maximally adapted to the
end-user’s speech while at the same time bringing development
costs down. The challenge is to employ a learning strategy that
can learn from only one or a few examples, in order to mini-
mize the time the end-user spends on training the system. In
this work, we will offer a comparison between multiple popu-
lar machine learning strategies to evaluate their effectiveness in
developing a fast learning self-taught VUI.

In previous work, we obtained encouraging results on fast
vocabulary acquisition [7] using non-negative matrix factoriza-
tion (NMF). Although in that work the learning speed of ac-
quiring acoustic models was investigated, it focused on larger
amounts of training data than targeted in this work. Moreover,
it considered a multi-label task in which spoken utterances were

associated with multiple labels at once, which penalized other
machine learning methods less suited for multi-label learning.
In contrast, in this work we will focus on speech classification,
labelling a spoken utterance with a single label.

Our contribution is twofold. First, we compare the per-
formance of five machine learning techniques: Dynamic Time
Warping (DTW), Gaussian Mixture Models (GMMs), Hidden
Markov Models (HMMs), Support Vector Machines (SVMs)
and Non-negative Matrix Factorization (NMF). Each of these
techniques have their strengths and weaknesses; for exam-
ple, while a HMM improves upon a GMM by being able to
model temporal structure, it does require more parameters to be
trained. When training with only one or a few training samples,
this may lead to overfitting. Second, we investigate to what
extent combining the aforementioned classification techniques,
‘boosting’, can improve results. We do this by comparing a
number of combination rules operating at the class label poste-
rior level [8].

The remainder of the paper is organised as follows. In Sec-
tion 2 we give an overview of the speech classification meth-
ods that are investigated. In Section 3 we describe the various
boosting approaches that will be considered. In Sections 4 and
5 we describe the experimental setup for evaluation on a small,
but highly realistic home automation database collected in the
ALADIN project [9]. The results of these experiments are pre-
sented in Section 6 and discussed in Section 7, and we conclude
with our summary and thoughts for future work in Section 8.

2. Classification methods
In a speech classification problem an unlabelled speech sig-
nal X is assigned to one of the m possible commands
{ω1, . . . , ωm}. The classification methods Dynamic Time
Warping (DTW), Gaussian Mixture Model (GMM) and Hidden
Markov Model (HMM) use a spectrographic feature vector rep-
resentation X = [x1, ...,xT] of a speech signal X , with T the
number of frames. The number of rows of X is the dimension
of the feature vector xt for one frame.

The classification methods Non-negative Matrix Factoriza-
tion (NMF) and Support Vector Machine (SVM) use a utter-
ance based feature vector x of a speech signalX . The utterance
based feature vector x is a column vector whose dimension N
depends on the kind of feature vector. More information about
the feature vectors used in this work for each of the techniques
is given in Section 4.2.

A classification method evaluates how well the unlabelled
speech signal X resembles speech signals associated with a
command class ωk. This similarity is expressed by the posi-
tive number Π(ωk, X), which is method dependent. The larger
Π(ωk, X), the larger the similarity between X and the speech
signals belonging to command ωk. The speech signal X is as-
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signed to the command ωj with the highest similarity:

assign X → ωj = argmax
ωk

Π(ωk, X). (1)

2.1. Dynamic Time Warping

Dynamic Time Warping (DTW) [10, 11, 12], is a method in
which an unlabelled speech signal is compared with a large col-
lection of labelled speech signals (exemplars) extracted from
the training data. Since such a comparison needs to take differ-
ent signal lengths and speech rate variations into account, DTW
first finds an optimal alignment between each pair of utterances
through non-linear time warping. The unlabelled speech signal
is labelled with the command which is associated with the most
similar exemplar.

As a learning method, DTW has the advantage that it makes
optimal use of all the available labelled data, because all train-
ing samples can be used as an exemplar. A drawback of DTW
is that the computational complexity of classification increases
linearly with the number of training samples.

Formally, the similarity between the frames of the unla-
belled speech signal X and the frames of each exemplar Xi

is represented by a T × Ti matrix DX,Xi containing the co-
sine distance between the spectrographic based feature vectors
representations X and Xi:

DX,Xi =
X′Xi

‖X‖‖Xi‖
. (2)

The similarity between two speech signals is expressed as
the score D̃X,Xi along the optimal path through the distance
matrix DX,Xi . The optimal path, from the left upper corner to
the right lower corner (Figure 1(a)), minimises the cumulative
acoustic differences and the total number of steps. The optimal
path is determined using a dynamical programming approach
with the Needleman-Wunsch algorithm [13].

The unlabelled speech signalX is assigned to the command
of the exemplar Xi with the highest similarity. The similarity
between X and ωk is expressed by the positive number

Π(ωk, X) = max
Xi of ωk

D̃X,Xi . (3)

2.2. Gaussian Mixture Model

In a Gaussian Mixture Model (GMM), the probability density
function is used to determine the acoustic likelihood of a com-
mand given the feature vectors of the unlabelled speech signal
[14].

Using a GMM is attractive, because it is a parametric model
in which the classification of an unlabelled speech signal takes
the same time independent of the amount of training data. An-
other advantage is that the use of a parametric model typically
allows better generalisation to unseen data, provided enough
training data is available to accurately estimate the parameters.

Each command ωk is represented by a weighted sum of
multivariate Gaussian distributions

fk(xt,µ,Σ) =
M∑

i=1

wiN(xt,µi,Σi), (4)

with µi the mean spectrographic based feature vector, Σi the
covariance matrix, wi the weights for each multivariate Gaus-
sian distribution in the GMM and M the number of multivari-
ate Gaussian distributions in the GMM. The weighted sum of
multivariate Gaussian distributions for each command ωk is

trained on the collection of speech signals {X(1), . . . , X(N)}
in the training data belonging to command ωk. By applying
the Expectation Maximization algorithm [15], the mean spec-
trographic based feature vector µi, the covariance matrix Σi

and the weights wi are obtained for each multivariate Gaussian
distribution in the GMM. The similarity between X and ωk is
expressed by the positive number

Π(ωk, X) = exp

(
1

T

T∑

t=1

log (fk(xt,µ,Σ))

)
. (5)

2.3. Hidden Markov Model

A Hidden Markov Model (HMM), the de facto standard model
in automatic speech recognition, augments the GMM by taking
the temporal structure of the speech into account.While known
to be a powerful model for speech given enough training data, it
is not clear a priori whether it can perform better than a GMM
if there is very little training data and when whole-word HMMs
to model the spoken commands are used rather than sub=words
HMMs.

In a HMM for speech classification, the commands ωk are
represented by a sequence Q of states q [16, 14]. For speech
classification the order in the speech signal X is important,
therefore a left-to-right (Bakis) HMM (Figure 1(b)) is used. A
HMM λk = (Πk,Ak,Bk) is characterized by the initial prob-
abilities π(k)

i , the transition probabilities a(k)ij and the emissions

b
(k)
i (xt), where i and j are the state indices. The emissions Bk

are a GMM fk(xt,µ,Σ) for each state.
The HMM λk is trained on the collection of speech signals

{X(1), . . . , X(N)} in the training data belonging to command
ωk by the Baum-Welch algorithm.

For an unlabelled speech signal X the optimal state se-
quence Q̃ in each HMM λk is calculated as

Q̃ = arg max
Q
P (Q|X, λk) = arg max

Q

P (Q,X|λk)

P (X|λk)
. (6)

The similarity between X and ωk, which is obtained by
applying the Viterbi algorithm, is the positive number

Π(ωk, X) = P (X, q, |λk). (7)

2.4. Support Vector Machine

A Support Vector Machine is a linear classifier which is trained
to be maximally discriminative between classes, possibly aug-
mented by working in a high dimensional (kernalized) space
[17]. SVMs are known to generalize well to unseen data, but
it may be difficult to accurately train the hyperplane dividing
classes with only few data points.

A SVM can be used for binary classification; to separate the
m commands in our speech classification task we use the one-
versus-one multi-label approach in this paper. For each pair of
commands ωk and ωl, a binary classification problem is solved,
which results in ny binary classification problems with

ny =
m(m− 1)

2
. (8)

The hyperplane of the linear classifier that separates two
commands ωk and ωl can be formulated as

yωk,ωl(x) = wT
ωk,ωl

x + bωk,ωl = constant, (9)
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(a) Example of the optimal path in the distance
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(c) Optimal hyperplane of the SVM classifier
maximizing the margin dividing two classes.

Figure 1: Graphical representation of the classification methods DTW, HMM and SVM.

with wωk,ωl ∈ Rn, x ∈ Rn, bωk,ωl ∈ R, yωk,ωl ∈ R. The
unique hyperplane for a binary classification problem (Figure
1(c)) can be found by rescaling the problem such that the x
closest to the hyperplane satisfy

|wωk,ωl

Tx + bωk,ωl | = 1. (10)

The speech signal X is associated with label vector

y(x) = [yω1,ω2(x), . . . , yωm−1,ωm(x)]T , (11)

with x the utterance based feature vector of X .
Each command ωk is associated with a command label vec-

tor y(k) ∈ {−1,+1}ny . The similarity between the speech
signal X and command ωk is the positive number

Π(ωk, X) =
(
y(k) == sign(y(x))

)
. (12)

2.5. Non-negative Matrix Factorization

Non-negative Matrix Factorization is an approach which fac-
torises the training data into a set of recurrent acoustic patterns
and their activations. In a supervised setting, these acoustic pat-
terns take on the distribution of the spoken commands, as well
as the acoustic patterns of filler words which are shared between
commands, e.g. the, and, please. As such, it can potentially
leverage shared information between commands.

A scheme of the Non-negative Matrix Factorization (NMF)
is given in Figure 2 [18]. The non-negative matrix V(train) con-
sists of two parts, viz. [V0

(train); V1
(train)]. Each of the m com-

mands ωk is represented by a vector representation y(k), which
is a zero m dimensional vector with a 1 on position k. The
columns of the matrix V0

(train) contain the vector representation
y(k) of the command ωk for each utterance in the training data,
so V0

(train) is a matrix of dimensionm×Ntrain. The columns of
the matrix V1

(train) contain the utterance based feature vector x
for each utteranceX in the training data, so V1

(train) is a matrix
of dimension length(x)×Ntrain. A low rank representation for
V1

(train) is obtained by factorizing V(train) as the product of two
non-negative matrices W and H(train), viz.

[
V0

(train)

V1
(train)

]
≈
[
W0

W1

]
H(train) = WH(train). (13)

The number of columns of W, i.e. the number of acoustic
patterns to extract from the training data, is fixed in advance.

The matrices W and H(train) are obtained by iteratively min-
imizing the Kullback-Leibler divergence [19] between V(train)

and WH(train). After training, the matrix W1 contains as
columns the acoustic patterns that exist in the training data. El-
ement W0(k, j) indicates if the acoustic pattern in column j
of W1 is present in command ωk. The element H(train)(i, j)
indicates how much the acoustic pattern in column i of W1

is present in utterance X(j) of the training data (column j of
V1

(train)).
For speech classification with NMF, the utterance based

feature vector x of speech signal X is used as vector
V1

(test). By minimizing the Kullback-Leibler divergence be-
tween V1

(test) and W1H(test), the vector H(test) is calculated

V1
(test) ≈W1H(test). (14)

An approximation of V0
(test), containing the representation

of the command for each utterance in the test data, is given by
the activation vector A

V0
(test) ≈ A = W0H(test). (15)

The similarity between speech signal X and command ωk

is given by the positive number

Π(ωk, X) = A(k). (16)

3. Combining methods
Each classification method uses different mechanisms to assign
an unlabelled speech signal X to the most probable command
ωj . As a result, not all classification methods assign an unla-
belled speech signal to the same command, so the misclassifi-
cations differ. In this paper we investigate whether combiningR
different classification methods, i.e. boosting [8], might reduce
the number of misclassifications. Each method r calculates a
positive number Πr(ωk, X) for each command ωk.

The numbers {Πr(ωk, X)}Mk=1 are normalized to construct
a probability vector pr for each method. The combination of
the classification methods assigns the unlabelled speech signal
X to the command ωj with the highest a posteriori probability

assign X → ωj = argmax
ωk

P (ωk|p1, ...,pR). (17)

Possible combination rules are the product rule, sum rule, max-
imum rule, minimum rule, median rule and majority rule. Table
1 gives the a posteriori probability for these rules.
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Figure 2: Scheme of Non-negative Matrix Factorization.
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The combination rules in Table 1 make the assumption that
each method assigns a speech signal to a command indepen-
dently of the other methods, which results in

P (p1, ...,pR|ωk) =

R∏

i=1

P (pi|ωk). (18)

In this paper the extra assumption of equal a priori probabili-
ties is made for each rule. The a posteriori probability of the
product rule is obtained by repeatedly applying Bayes’ rule. In
the sum rule the assumption is made that the a posteriori prob-
abilities P (ωk|pi) calculated by the different methods do not
significantly differ from the a priori probabilities P (ωk). The
maximum rule is obtained starting from the sum rule and using
the relation

1

R

R∑

i=1

P (ωk|pi) ≤ max
i
P (ωk|pi). (19)

The minimum rule is obtained starting from the product rule
and using the relation

R∏

i=1

P (ωk|pi) ≤ min
i
P (ωk|pi). (20)

The a posteriori probability of the median rule is obtained by
replacing the mean by the more robust median in the sum rule.
In the majority rule the assumption is made that the a posteriori
probabilities P (ωk|pi) calculated by the different methods do
not significantly differ from the a priori probabilities P (ωk).

4. Experimental setup
4.1. Dataset

The experiments are performed on the first home automation
dataset (DOMOTICA-1) of the ALADIN project [9]. The dataset
consists of non-pathological speech commands which were
recorded in a realistic setting, i.e. a fully automated room using
a wizard-of-oz device control. The commands were prompted
using visual cues (a video) on a computer screen. In order to
simulate situations with environmental noise, recordings were
also made with a concurrent sound source. In addition to
a close-talk microphone, multichannel audio recordings were
made with multiple microphone arrays, placed near the user, on
walls and near the optional noise source.

Table 1: A posteriori probabilities for combination rules in
assumption of equal a priori probabilities.

rule P (ωk|p1, ...,pR)

product
R∏

i=1

P (ωk|pi)

sum
R∑

i=1

P (ωk|pi)

maximum max
i
P (ωk|pi)

minimum min
i
P (ωk|pi)

median med
i
P (ωk|pi)

majority
1

R

R∑

i=1

∆k,i

with ∆k,i =

{
1 if ωk = argmax

ωl

P (ωl|pi)

0 otherwise

The noisy recordings were created by playing a radio in the
background with a sound level of 60dB Sound Pressure Level,
which is the sound level of average speech. It was ensured that
the measured SNR to the nearest microphone remained above
15dB.

The dataset consists of 27 test subjects of which 20 are of
the targeted user group. Each person was asked to go repeatedly
through a list of 33 different actions, until a recording time of
30 minutes was reached, yielding a dataset of 1888 commands
for the target group. In addition to this set, longer recording
sessions with 7 non-target users were carried out, yielding 1699
spoken commands.

The experiments are performed on persons 5,7,20,22 and
26, on the noisy dataset recorded with the close-talk micro-
phone. These speakers were selected because they were the
only speakers with at least 3 spoken samples of each command.
We will refer to them by these numbers to keep correspondence
with other work on the same dataset.

4.2. Acoustic representation

In this paper two classes of feature vectors are used: spectro-
graphic based feature vectors and utterance based feature vec-
tors [20, 21]. The MFCC, MFCCDD and MIDA feature vectors
are used as spectrographic based feature vectors. The GMM-
supervector and the feature vector based on the histogram of
acoustic occurrences and co-occurrences (sumHAC) are used
as utterance based feature vector [18]. In this paper a Hamming
window of size 30 ms is used with frame shifts of 15 ms. A
pre-emphasis of 0.95 is used.

The MFCC feature vectors are obtained by applying an In-
verse Discrete Cosine Transform (IDCT) to log-Mel spectra. In
this paper, we use 12 MFCCs in each frame, in addition to the
log energy, resulting in 13-dimensional feature vectors. To ob-
tain the MFCCDD feature vectors, the 13-dimensional MFCC
feature vectors are augmented with their first and second order
differences (∆- and ∆∆-features), yielding a total of 39 coeffi-
cients per frame.

The Mutual Information Discriminant Analysis (MIDA)
feature vectors are obtained with a linear transformation that
maximizes the separability between different classes of input
frames [22]. In this paper, we determine ∆- and ∆∆-features
on the 24 log-Mel spectral features, leading to 72-dimensional
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input vectors. On these representations we then perform the
MIDA-transformation, separating the classes in the input space
and at the same time reducing its dimensionality from 72 to 39.

The spectrographic based feature vectors are the starting
point to construct the utterance based feature vectors. The
GMM-supervector combines 60-dimensional MFCCDD spec-
trographic based feature vectors to one high-dimensional utter-
ance based feature vector [21]. The construction of a GMM-
supervector consists of three steps. The first step is training a
Gaussian Mixture Model Universal Background Model (GMM
UBM). To be more robust, a trained GMM UBM with 512 mul-
tivariate Gaussian distributions is used. The development data
set used to train the UBM includes over 30,000 speech record-
ings and was sourced from NIST 2004-2006 SRE databases,
LDC releases of Switchboard 2 phase III and Switchboard Cel-
lular (parts 1 and 2) [23]. The second step in constructing a
GMM-supervector is adapting the means of the multivariate
Gaussian distributions of the GMM UBM according to the spec-
trographic based feature vectors of the speech signal. In the
last step the 512 adapted means of dimension 60 are placed in
a column vector, which gives the resulting 30720-dimensional
GMM-supervector of the speech signal.

The utterance based feature vector based on the histogram
of acoustic occurrences and co-occurrences (sumHAC) is con-
structed by applying a k-means clustering algorithm [16] to
the MFCCDD spectrographic based feature vectors to obtain
a codebook [18]. Each spectrographic based feature vector is
assigned to a prototype vector in the codebook by means of an
extension (softVQ) to vector quantization [24]. With softVQ
a frame based feature vector characterized by its proximity to
multiple prototypes is obtained. Proximity is measured as the
posterior probability of a collection of Gaussians, much like in
semi-continuous HMMs.

In this paper Voice Activity Detection (VAD) is used to
improve the performance of a classification method [25]. By
distinguishing speech and silence frames in the speech signal,
both training and classification are only based on the speech
frames. The distinction between speech and silence frames is
made based on the energy in the frame.

4.3. Classification methods

Below, we detail the acoustic representations and parameter set-
tings for each of the methods. To ensure a best-case scenario for
each of the methods, we optimised the settings for each method
individually.

DTW employs MFCC feature vectors. The use of MFC-
CDD and MIDA features was explored in a pilot experiment,
but did not result in significant improvements.

Both the GMM and the HMM use the spectrographic MIDA
feature vectors. The full-covariance GMM consists of 10 mix-
tures, while the GMM employed in the HMM uses 5 mixtures
and a three state left-to-right HMM. The implementation uses
the logarithm of the probabilities to obtain a numerically stable
implementation [26].

The linear kernel SVM operates on GMM-supervectors,
tuned using a cross-validation grid search. Finally, NMF is
applied to the utterance based feature vector sumHAC, con-
structed starting from the spectrographic based feature vector
MFCCDD and using the vector quantization method softVQ.
In this paper codebooks of size 50 are used for softVQ and 36
acoustic patterns are extracted from the training data (columns
of W), where 3 are used for filler words.

Table 2 gives an overview of the setting for the different

Table 2: Settings for each classification method.

method setting
DTW MFCC
GMM MIDA, 10 mixtures
HMM MIDA, 3 states, 5 mixtures
SVM GMM-supervector (MFCCDD)
NMF sumHAC (MFCCDD, softVQ)

classification methods.

5. Experiments
5.1. Comparing classifiers

For the experiment to determine the best classification method
only 22 commands with 3 examples or more in the noisy record-
ing scenario of person 5, 7, 20, 22 and 26 are considered. There
is not enough data for the other persons in the data to investigate
the influence of the number of examples for each command on
the classification.

In a small dataset, the division of the commands in groups
with cross-validation is more important than in larger datasets.
Therefore an adaptation of cross-validation is used in the exper-
iments. The commands are randomly divided in groups with the
requirement that in each group there is exactly one speech sig-
nal belonging to each command. The least frequent command
in the dataset determines the number of disjunct groups. The
remaining speech signals are not used in the experiments.

To determine the accuracies of the different classification
methods for k examples for each command, the classification
methods are trained on k disjunct groups and tested on 1 dis-
junct group. All possible combinations of training groups and
test group are considered. To minimize the influence of the di-
vision in groups, the experiments are repeated with 5 different
random divisions in groups.

5.2. Combining classifiers

For the experiment to determine the influence of boosting on
the accuracy only 22 commands with 3 examples or more in
the noisy dataset of person 26 are considered. For each method
i ∈ {DTW, GMM, HMM, SVM, NMF} the 22×22 matrix Πi

is constructed with as (k, j) element the number Πi(ωk, X
(j))

where ωk is the considered command and X(j) a speech sig-
nal in the testdata. Each column in the matrix Πi is scaled
to a probability vector, resulting in the matrix Pi. The adap-
tation of cross validation, as discussed in section 5.1, is used
and the experiments are repeated with 5 different random di-
visions in groups to minimize the influence of the division in
groups. The matrices Pi of the different combinations of test
group and trainingsdata with 5 random divisions in groups are
concatenated in the matrix Pi,TOT for n examples in the train-
ingsdata. The matrix Pi,TOT is of dimension 22×NTOT, where
NTOT is the product of the number of commands (22), the num-
ber of random divisions in groups (5), the number of test groups
and the number of different trainingsdata for n examples in the
trainingsdata.

The goal of boosting is to achieve an improvement in the
accuracies with respect to the individual classification methods.
In the boosting experiment, each method i is assigned a pos-
itive weight wi, so P (ωk|pi) becomes wiP (ωk|pi). For the
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Table 3: Accuracies obtained with classification methods in
noisy recording scenario for person 5, 7, 20, 22 and 26.

Person 5
NEX DTW GMM HMM SVM NMF

1 48.6 30.5 17.9 5.3 56.4
2 56.1 72.4 56.1 6.7 87.0

Person 7
NEX DTW GMM HMM SVM NMF

1 23.9 28.3 16.5 4.8 42.4
2 30.9 51.5 32.7 3.0 62.7

Person 20
NEX DTW GMM HMM SVM NMF

1 45.0 47.3 29.2 10.8 47.6
2 54.8 71.2 55.8 30.6 80.0

Person 22
NEX DTW GMM HMM SVM NMF

1 67.0 45.9 29.7 10.2 49.8
2 73.6 82.1 71.2 13.9 86.7

Person 26
NEX DTW GMM HMM SVM NMF

1 66.5 45.5 34.0 23.9 63.4
2 75.8 69.3 66.0 53.1 81.6
3 80.2 78.4 79.2 69.0 87.5
4 83.5 83.3 84.7 77.8 90.8
5 85.6 85.9 88.2 81.5 91.8

majority rule the definition of ∆k,i becomes

∆k,i =

{
wi if ωk = argmax

ωl

P (ωl|pi)

0 otherwise.
(21)

In this way a better classification method has a higher influence
on the a posteriori probability.

The optimal weights wi of the matrices Pi,TOT of the meth-
ods i in the boosting rules are obtained using grid search
for 1 example for each command. The grid search of the
weight wi for each method i is between 0 and 1 with step
size 1/4. Each possible combination of the weights w =
[wDTW, wGMM, wHMM, wSVM, wNMF] is scaled to one. For the
combination rules, the weights w = [1/4, 1/4, 1/4, 1/4, 1/4]
and w = [1, 1, 1, 1, 1] result in the same normalized weights
w = [1/5, 1/5, 1/5, 1/5, 1/5]. Only the unique normalized
weights are considered. If there are multiple weights w which
result in the highest accuracies, the first w is used as optimal
weight.

6. Results
6.1. Comparing classifiers

Table 3 shows the accuracies with different NEX examples for
each command in the trainingsdata and for person 5, 7, 20, 22
and 26 with the settings of Table 2.

Table 3 shows that NMF gives the highest accuracies for
each person, except for person 22 and 26 with one example
for each command. The lowest accuracies are obtained with
classification method SVM. The accuracies improve with an in-
creasing number examples NEX for each command, except for
person 7 with SVM. The accuracies of person 7 are significantly
lower than those of the other persons. For person 5 the second
highest accuracies are obtained with DTW and NMF for 1 and

Table 4: Weights for person 26 with combination rules.

rule DTW GMM HMM SVM NMF
product 4/5 0 0 0 1/5

sum 4/5 0 0 0 1/5
maximum 4/5 0 0 0 1/5
minimum 1/17 4/17 4/17 4/17 4/17
median 1/6 4/6 0 0 1/6
majority 2/6 1/6 0 1/6 2/6

Table 5: Accuracies for person 26 with combination rules.

NEX product sum max min med maj
1 73.0 70.6 70.7 23.9 66.7 70.2
2 85.2 83.8 83.5 52.7 79.3 83.4
3 89.3 88.8 87.8 68.7 84.4 88.3
4 91.2 91.0 90.6 77.5 88.2 90.8
5 92.9 92.0 91.1 81.2 90.5 91.7

2 examples for each command respectively. For person 7 and
20 the second highest accuracies are obtained with GMM. The
second highest accuracies for person 22 are obtained with NMF
(1 example) and GMM (2 examples). For person 26 the second
highest accuracies are obtained with NMF (1 example), DTW
(2-3 examples) and HMM (4-5 examples). The accuracies of
person 26 with GMM are initially higher than those of HMM
(1-2 examples), but for more examples (3-5) the accuracies of
HMM are higher.

6.2. Combining classifiers

In Table 4 the optimal weights are shown that are obtained by
grid search with 1 example for each command in the training
data.

Table 4 shows that the product rule, sum rule and maximum
rule assign an unlabelled speech signal X based on the proba-
bility vectors pDTW and pNMF. The median rule uses the
probability vectors pDTW, pGMM and pNMF. The majority
rule uses all probability vectors except pHMM. The minimum
rule bases the assignment on the probability vectors of all classi-
fication methods. The according non normalized weights in the
grid search are w = [1/4, 1, 1, 1, 1]. In the minimum rule the
probability vector pDTW gets the smallest weight. In Table 5
the accuracies obtained with the individual classification meth-
ods and the different boosting rules with weights as in Table 4
are shown.

Table 5 shows that the highest individual accuracies are ob-
tained with the classification method DTW (1 example) and
NMF (2-5 examples). The classification method SVM gives
the lowest accuracies. The more examples for each command
in the training data, the higher the accuracies of the individual
classification methods are.

In Table 5 a significant improvement in the accuracies is
observed for the product rule and sum rule with respect to the
highest accuracies obtained with the individual classification
methods. The maximum rule and majority rule give higher ac-
curacies for 1 to 3 examples for each command in the training
data with respect to the individual methods. For more examples
for each command in the training data, the accuracies obtained
with the maximum rule and majority rule are similar to those
obtained with NMF. The accuracies obtained with median rule
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are lower than the accuracies obtained with the best individ-
ual classification method NMF, except for 1 example for each
command. The median rule performs better than all individual
classification methods except NMF. The minimum rule gives
similar accuracies as the worst individual classification method
SVM.

7. Discussion
7.1. comparing classifiers

When comparing the classifiers in Table 3, we observe a very
large difference between classification methods. Since for
speaker 26, the difference between methods becomes substan-
tially smaller with increasing numbers of examples per com-
mand, we can indeed attribute most of these difference to the
amount of training data used. Although it is difficult to set a tar-
get accuracy which suffices for practical applicability of these
techniques, it is encouraging that for most speakers 2 examples
suffice to achieve 80 to 90 % accuracy. The lower accuracies
of speaker 7, although still at 62.7 % for NMF, are due to a
speech impairment. Informal listening tests revealed that for
this speaker, the spoken commands are difficult to understand
even for humans.

As expected, DTW achieves good results when presented
with only a single training sample, but is outperformed by mod-
els which learn their parameters as soon as there is more training
data. It is interesting to observe that HMM is outperformed by
the simpler GMM until at least 3 training samples are presented.
It seems that even though the GMM employed by the HMM is
smaller (5 vs 10 mixtures), the larger number of parameters that
needs to be trained is still problematic for small training sizes.

Of all the methods, the SVM performs the worst, with re-
sults almost at chance level for some speakers. The results on
speaker 26 indicate once again, that with more data the results
become comparable. NMF, on the other hand, is able to per-
form well both with little and larger amounts of training data.
Presumably, this is due to its capability to use some of its recur-
rent patterns to model phenomena such as filler words, which
allows the recurrent patterns modelling commands to be more
discriminative. Although these results do not allow us to inves-
tigate the accuracy when presented with much more data (hun-
dreds of examples), but results in [7] do indicate that also in
these regimes, NMF be adequate.

7.2. Combining classifiers

Unfortunately, the amount of data available did not allow us
to explore methods which learn the boosting weights from the
data. Our experiments therefore show an upper limit on the
performance gains that can be expected using boosting. Addi-
tionally, the weights that are obtained allow us to judge which
methods offer complementary information.

The product rule, sum rule and maximum rule only use the
2 classification methods DTW and NMF which have the highest
accuracies for 1 example for each command. The weight wDTW

is higher than wNMF because the accuracy of DTW is higher
than that of NMF for 1 example for each command. Since these
rules have the highest weight to the best classification method,
the best accuracies are obtained for these rules in comparison
with the other boosting rules. This effect is only visible for a
few examples for each command. An explanation for this is
that the best classification method DTW for 1 example gains
little in comparison with the other classification methods when
increasing the amount of examples for each command.

The accuracies obtained with the minimum rule are not
more than the accuracies obtained with the worst classification
method SVM. It is plausible that the minimum rule only gives
good results if the entropy of the probabilities of the different
commands for the classification methods is small (probabilities
of different commands in one classification method are close
together). This is not the case for the considered classification
methods. In this experiment, the minimum rule has the opposite
effect of what is expected of a boosting rule.

The median rule does not take the classification method
HMM and SVM, which have the lowest accuracies for 1 exam-
ple for each command. The obtained accuracies are similar to
the accuracies obtained with NMF. This is achieved by giving
the best classification methods NMF and DTW a weight such
that their weighted probability vector is median.

The majority rule assigns a relative high weight to the 2 best
classification methods DTW and NMF for 1 example for each
command, as expected. GMM and SVM also get a non zero
weight. HMM is assigned a zero weight, which is explained by
the fact that HMM makes more and similar misclassifications
than GMM, because of the lack of data for 1 example for each
command.

The effect of boosting decreases when increasing the
amount of examples for each command. This is explained by
the weights are trained on 1 example for each command and the
changing order of best classification methods. Some classifica-
tion methods (HMM, SVM) need more data to obtain a higher
accuracy, while DTW gains relatively little in accuracy when
increasing the number of data.

8. Conclusions
In this paper the performance of the classification methods
Dynamic Time Warping (DTW), Gaussian Mixture Model
(GMM), Hidden Markov Model (HMM), Support Vector Ma-
chine (SVM) and Non-negative Matrix Factorization (NMF) are
investigated on a speech classification task. Evaluations on a re-
alistic home automation database show that NMF is best suited
for speech classification with a small amount of data. Next, we
investigated if combining different methods through boosting
might improve the classification. Both the product rule and the
sum rule give higher accuracies than the best individual classi-
fication method. The gain of combining classification methods
is higher for a small amount of data. Future work will focus
on exploring methods to learn the boosting weights on small
amounts of training data.

9. Acknowledgements
The research of Jort F. Gemmeke is funded by IWT-SBO grant
100049.

10. References
[1] J. Noyes and C. Frankish, “Speech recognition technology for in-

dividuals with disabilities,” Augmentative and Alternative Com-
munication, vol. 8, no. 4, pp. 297–303, 1992.

[2] H. Christensen, S. Cunningham, C. Fox, P. Green, and T. Hain,
“A comparative study of adaptive, automatic recognition of disor-
dered speech,” in Proc Interspeech 2012, Portland, Oregon, US,
Sep 2012.

[3] K. T. Mengistu and F. Rudzicz, “Comparing humans and au-
tomatic speech recognition systems in recognizing dysarthric
speech,” in Proceedings of the Canadian Conference on Artificial
Intelligence, 2011.

27



[4] H. V. Sharma and M. Hasegawa-Johnson, “State transition in-
terpolation and map adaptation for hmm-based dysarthric speech
recognition,” in HLT/NAACL Workshop on Speech and Language
Processing for Assistive Technology (SLPAT), 2010, pp. 72–79.

[5] F. Rudzicz, “Acoustic transformations to improve the intelligibil-
ity of dysarthric speech,” in Proceedings of the Second Workshop
on Speech and Language Processing for Assistive Technologies
(SLPAT2011), 2011.

[6] M. S. Hawley, P. Enderby, P. Green, S. Cunningham,
S. Brownsell, J. Carmichael, M. Parker, A. Hatzis, P. O’Neill, and
R. Palmer, “A speech-controlled environmental control system for
people with severe dysarthria,” Medical Engineering & Physics,
vol. 5, no. 29, pp. 586 – 593, 2007.

[7] J. Driesen, J. Gemmeke, and H. Van hamme, “Weakly super-
vised keyword learning using sparse representations of speech,”
in Proceedings of the 36th International Conference on Acoustics,
Speech and Signal Processing, Kyoto, Japan, 2012.

[8] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combin-
ing classifiers,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 20, no. 3, pp. 226–239, 1998.

[9] ALADIN, “Adaptation and Learning for Assis-
tive Domestic Vocal INterfaces,” Project Page:
http://www.esat.kuleuven.be/psi/spraak/projects/ALADIN.

[10] T. N. Sainath, B. Ramabhadran, D. Nahamoo, D. Kanevsky, D. V.
Compernolle, K. Demuynck, J. F. Gemmeke, J. R. Bellegarda,
and S. Sundaram, “Exemplar-based processing for speech recog-
nition,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 98–
113, 2012.

[11] D. Ellis, “Dynamic Time Warp (DTW)
in Matlab,” Web resource, available:
http://www.ee.columbia.edu/ dpwe/resources/matlab/dtw/,
2003.

[12] M. De Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools,
and D. Van Compernolle, “Template-based continuous speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 15, no. 4, pp. 1377–1390, 2007.

[13] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of molecular biology, vol. 48, no. 3, pp. 443–
453, 1970.

[14] D. Jurafsky and J. H. Martin, Speech and language processing: an
introduction to natural language processing, computational lin-
guistics and speech recognition, 2nd ed. Pearson International
Edition, 2009.

[15] S. K. Ng, T. Krishnan, and G. J. McLachlan, “The EM algorithm,”
Handbook of computational statistics, vol. 1, pp. 137–168, 2004.

[16] X. Huang, A. Acero, H.-W. Hon et al., Spoken language process-
ing. Prentice Hall PTR New Jersey, 2001, vol. 15.

[17] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least Squares Support Vector Machines. World
Scientific Publishing Co. Pte. Ltd., 2002.

[18] J. Driesen, “Discovering words in speech using matrix factoriza-
tion,” Ph.D. dissertation, Ph. D. dissertation, KU Leuven, ESAT,
2012.

[19] T. M. Cover and J. A. Thomas, Elements of information theory.
Wiley-interscience, 2012.

[20] J. Driesen, J. F. Gemmeke, and H. Van hamme, “Data-driven
speech representations for NMF-based word learning,” in Proc.
SAPA-SCALE, 2012, pp. 98–103.

[21] M. H. Bahari et al., “Speaker age estimation using Hidden Markov
Model weight supervectors,” in Information Science, Signal Pro-
cessing and their Applications (ISSPA), 2012 11th International
Conference on. IEEE, 2012, pp. 517–521.

[22] K. Demuynck, J. Duchateau, and D. Van Compernolle, “Opti-
mal feature sub-space selection based on discriminant analysis,”
in Proc. Eurospeech, vol. 3, 1999, pp. 1311–1314.

[23] M. H. Bahari, R. Saeidi, H. Van hamme, and D. van Leeuwen,
“Accent recognition using i-vector, gaussian mean supervector
and gaussian posterior probability supervector for spontaneous
telephone speech,” Proceedings ICASSP 2013, 2013.

[24] S. Meng and H. Van hamme, “Coding Methods for the NMF Ap-
proach to Speech Recognition and Vocabulary Acquisition,” 2011.

[25] J. Ramirez, J. M. Górriz, and J. C. Segura, “Voice activity de-
tection. fundamentals and speech recognition system robustness,”
Robust Speech Recognition and Understanding, pp. 1–22, 2007.

[26] T. P. Mann, “Numerically stable hidden Markov model implemen-
tation,” An HMM scaling tutorial, pp. 1–8, 2006.

28



SLPAT 2013, 4th Workshop on Speech and Language Processing for Assistive Technologies, pages 29–34,
Grenoble, France, 21–22 August, 2013. c©2013 Association for Computational Linguistics

homeService: Voice-enabled assistive technology in the home using
cloud-based automatic speech recognition

H. Christensen1, I. Casanuevo1, S. Cunningham2, P. Green1, T. Hain1

1Computer Science, University of Sheffield, Sheffield, United Kingdom
2Human Communication Sciences, University of Sheffield, Sheffield, United Kingdom

h.christensen@dcs.shef.ac.uk, i.casanueva@sheffield.ac.uk, s.cunningham@sheffield.ac.uk

p.green@dcs.shef.ac.uk , t.hain@dcs.shef.ac.uk

Abstract
We report on the development of a system which will bring per-
sonalised state-of-the-art automatic speech recognition into the
homes of people who require voice-controlled assistive tech-
nology. The ASR will be sited remotely (‘in-the-cloud’) and
run over a broadband link. This will enable us to adapt the
system to the user’s requirements and improv the accuracy and
range of the system while it is in use. We outline a method-
ology for this: the ‘Virtuous Circle’. A case study indicates
that we can obtain acceptable performance by adapting speaker-
independent recognisers with 10 examples of each word in a 30-
word command-and-control vocabulary. We explain the idea of
a PAL - a Personal Adaptive Listener - which we intend to de-
velop out of this study.
Index Terms: dysarthric speech recognition, ‘in-the-field’
speech recognition, cloud-based speech recognition

1. Introduction
With an ageing population and the increasing acceptance of
community-based care, there is a growing demand for elec-
tronic assistive technology (EAT). One of the major uses of EAT
is to support independent living, particularly among the elderly
and the physically impaired. Devices such as environmental
control systems (ECSs) allow people to control many aspects of
their home environment through a single control interface. Typ-
ically these systems will be operated using a switch-scanning
interface which accommodates the limited motor control abili-
ties of users who have physical disabilities.

A major drawback of switch-scanning interfaces is that they
can be time-consuming and effortful to use. It is therefore ap-
propriate to consider alternative input-methods for EAT that can
accommodate users with limited physical abilities. The use
of speech is an attractive alternative to switch-scanning inter-
faces. Indeed the prospect of using automatic speech recog-
nition (ASR) as an alternative input-method for EAT has been
discussed in the literature for more than thirty years [1, 2].

A significant proportion of people requiring EAT have
dysarthria, a motor speech disorder associated with their phys-
ical disability [3]. As a result of the effect of dysarthria on
speech production, inexperienced listeners find speech from
people with dysarthria difficult to recognise [4]. Machine recog-
nition of dysarthric speech is also considered a difficult prob-
lem.

Large vocabulary speaker adaptive recognition systems
have been successfully used for people with mild and moderate
dysarthria as a means of inputting text. These systems, how-
ever, have been shown to be less successful for people with se-

vere dysarthria (e.g. [5, 6]). Specific modifications to speaker
adaptive speech recognition algorithms with the aim of improv-
ing the recognition of dysarthric speech patterns have been de-
scribed but they have not yet appeared in a widely available
form [7, 8].

Speaker dependent speech recognition has often been
thought to be more appropriate for users with severe dysarthria.
This is because models can be trained directly with the speaker’s
utterances rather than assuming their speech is similar to the
typical speech the models were originally trained with [9].
Speaker dependent recognisers have been shown to perform
well for severely dysarthric users in several studies [10, 11].
In these examples however, the input vocabularies were quite
small, which can limit the potential usefulness of the EAT sys-
tem.

In recent years, new corpora of dysarthric speech have
become available [12, 13]. These data sets have enabled
researchers to conduct more systematic studies than before
[14, 15], and open the possibility of comparing techniques us-
ing reference test sets. These corpora are however small com-
pared to those used in modern, mainstream ASR. One reason
for their relatively small size is the fact that prolonged speak-
ing for people with severe dysarthria can be tiring. Therefore
passive data collection from this population is likely to remain
limited, unlike data collection for the typical speaking popula-
tion. The only way to acquire substantial amounts of data is
from a system which is being actively used.

Most voice-enabled EATs described in the literature have
been systems that have been developed for relatively small scale
studies and with the main focus being on the observed ASR per-
formance. There are some real challenges to be solved when
porting such systems and setups to more ‘realistic’ scenarios,
especially because of the larger number of users involved, and
the need for a large degree of automation whilst still accommo-
dating the needs of the individual users for personalisation. This
paper describes recent work on designing a real ‘in-the-field’
ASR-based EAT system where scalability and ease of initialisa-
tion has been at the forefront of the design from the onset. We
have focused on two issues: how to most effectively setup an
initial system for a given speaker (finding their optimal ‘oper-
ating point’) and how to use cloud-based ASR servers to allow
the researcher free access to maintain and update ASR models.

We present the homeService system in which we are de-
veloping state-of-the-art ASR. homeService is part of the UK
EPSRC Project in Natural Speech Technology project, a collab-
oration between the Universities of Edinburgh, Cambridge and
Sheffield. homeService users are being provided with speech-
driven ECS and eventually spoken access to other digital appli-

29



cations. We are in the process of recruiting around 10 users to a
longitudinal study: each user will be engaged with homeService
for at least 6 months.

From our experience in previous projects [10, 16], which in-
cluded user requirement studies, we will continue to work with
users in a collaborative way: the users effectively become part
of the research team. As part of this process, users will inform
the design and specification of the functionality of their personal
system. In addition we will work with users to close what we
have referred to as the ‘virtuous circle’. By working with each
user we will establish an initial ‘operating point’: a task which is
sufficiently simple that we can expect good performance from
the ASR and yet sufficiently useful that the user’s interest is
maintained. We deploy this system and provide software which
enables the user to practice with it. Practice improves the user’s
pronunciation consistency and, crucially, provides more data for
ASR training. The exercises provide the user with feedback, not
based on the match to a standard pronunciation but on how well
a new utterance fits the user’s current model. When the perfor-
mance of the system has improved sufficiently, we widen the
vocabulary and range of target devices homeService controls.
This process is iterated: the ’virtuous circle’. This is an exam-
ple of Participatory Design [17].

As part of the ethical approval obtained for the study, the
informed consent of users will enable us to collect examples
of speech data from their interactions with the homeService
system. These interactions will be stored and used to create
a database which will become available to the research team
but will not be made publicly available due to privacy issues.
To further reduce any concern users might have about the sys-
tem’s ability to ‘listen’ to them, the interface will clearly in-
dicate when the microphone is open - typically only a couple
of seconds for each voice command. At any time participants
will also be able to ”opt-out” of the recording process, or even
request recordings be deleted and not used in the database.

The ASR will run remotely ‘in-the-cloud’, and be con-
nected to the homeService users’ home by a dedicated broad-
band link. This is a novel approach for providing speech-driven
EAT which will enable us to collect speech data, train new sta-
tistical models, experiment with adaptation algorithms, change
vocabularies and so on without having to modify the equipment
in the user’s home. This will reduce the amount of researcher
time spent travelling to visit users, but more importantly will
enable us to modify the system rapidly. This means new mod-
els can be deployed when they are ready, and new data can be
analysed as soon as it is collected. We explain the homeService
setup in more detail in section 2.

The development of the ‘in-the-cloud’ recognition system
is described in section 3. In section 5 our participatory design
methodology is further developed. Some preliminary results of
the speech recognition system are presented in section 4.

2. homeService setup
A schematic diagram of the homeService system is shown in
figure 1. The system consists of two distinct parts: the atH-
ome system and the atLab system. The atHome system will be
deployed in a user’s home and comprises a PC and a series of
input and output devices to enable the system to receive spoken
commands and interact with devices in the home environment,
for example through the transmission of infrared signals. The
atLab system resides at the university and comprises the main
server which operates the ASR system and maintains the system
state for each atHome system.

@Lab

@Home

Main servers

- ASR
- speech synthesis

- system state

Tablet

Infrared sender

Microphone

Audio
Recognition

result

PC hub

Figure 1: Diagram of the homeService system with its two dis-
tinct parts: the atHome component in a user’s home and the at-
Lab ‘in-the-cloud’ part. For simplicity, only one user is drawn
here but the cloud-based ASR server enables us to scale to many
simultaneous users.

The system hardware consists of ‘off-the-shelf’ items such
as a microphone array, an Android tablet for display and an in-
frared transmitters, which reduces the overall cost of each in-
stallation, and means the system will not need to rely on spe-
cialist hardware. In the following sections the components of
the system are described in detail.

2.1. Components

2.1.1. The PC

The atHome software is designed to run on a Linux-based PC.
This PC will act as the main hub for the atHome system. It
maintains the communication between the atLab part of the sys-
tem and the peripherals in the atHome part of the system. The
software controls the recording of audio from the system mi-
crophone, sends the audio back to the lab via a broadband link,
provides feedback to the user, and controls the sending of in-
frared signals to various devices in the home. The software also
sends updates to the screen of the tablet, and when appropriate,
will play synthesised speech output.

Although, from an operational point of the view, the PC is
at the heart of the atHome system, the design philosophy of the
atHome system ensures that the PC is as unobtrusive as possi-
ble. Consequently, from the users’ perspective the system mi-
crophone and the tablet PC are the key parts of the system.

The requirements for the PC are that it should to be rela-
tively small, quiet and discrete, with a low energy consumption.
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For this a Shuttle XH61v with a core i3 3220 was chosen (30.5
x 6.4 x 21.6 cm).

2.1.2. Microphone

For speech data capture, we use a high-quality USB microphone
array (Dev-audio Microcone). It has a hexagonal design with 6
microphones placed in each of the six sectors, each covering
approximately 60◦ of the surroundings. The Software Develop-
ment Kit gives access to each of the 6 individual microphone
channels as well as a stereo output of the beam-formed and
noise-reduced signal, which will help us to reduce cross-talk
from other speakers, the TV and so on. The Microcone also
has a pleasing design, which is important as it will have to have
a relatively prominent and very visible position in the users’
homes throughout the full study.

2.1.3. Infrared transmitter

Remote control of the devices (such as TV, radio, lights etc.)
is performed by an USB infrared (IR) emitter (IRtransWiFi
IRDB). To make it personalised for each home, there is a config-
uration step where the emitter is trained with the IR commands
from the original remote controls of the home devices. The re-
searcher has to perform this step manually, using the software
provided with the IR emitter. After this step is completed, the
system is able to associate system actions (e.g. “turn on TV”)
to the specific IR commands for the devices it is controlling.

2.1.4. Android tablet

The Android tablet acts as a personalised, visual interface for
the user. This has several advantages; during system operation
it will

• display a representation of the system state,
• display the options available for the user (this directly

corresponds to the current ASR vocabulary),
• act as a touch input if necessary.

In addition, the tablet will have an app which will enable the
system to acquire additional training data from the user. Soft-
ware for user practice exercises will run on the tablet.

The configuration of the display is loaded from a XML file,
where the description of each device is written by the system
developer. This permits the personalisation of the display.

2.1.5. atLab Server

The audio signal which is to be recognised is transferred across
to the atLab part of the homeService system over the broadband
link and subsequently passed on to the ASR server, also run-
ning at the university. When the recognition result is known
it is ‘acted’ upon by the atLab software: for the environmen-
tal control system this means determining the next state of the
system including possible infrared-codes which need transmit-
ting and whether the tablet screen activity needs updating. All
of the information concerning the state is then communicated
back to the home of the user and acted upon. The two main
communication links in the system (to the home and to the lab)
are governed by individual APIs.

The atLab software runs on a dedicated server at the univer-
sity. Apart from being the main interface to the individual users,
it also handles the communication to and from a bank of ASR
servers (one for each user) which will provide online speech
recognition based on models and setups that are personalised to
each user.

3. ASR
One of the main design aims was to base the system on ‘in-
the-cloud’ ASR. This provides the research team with full con-
trol over the specifics of the ASR for each user; it is relatively
straight-forward to change for example acoustic models, vocab-
ularies and lexicons without disturbing the user unnecessarily.
It also gives the researchers more scope for monitoring the state
of the atHome systems, and crucially, for much more immedi-
ate trouble-shooting. Software components can easily be taken
down and re-started. In the future, we also envisage having
short remote chat-sessions with the users/carers to discuss any
issues about the system.

It is important to bear in mind that this easy access design
does impose constraints on the research team. For instance,
given that data will be collected from the microphone for speech
events while the system is in use, all users must be carefully
briefed about how these recordings will be made and stored be-
fore they can provide informed consent to take part in the study.
In the future it is envisaged that the system will be used in ‘open
mic’ sessions when all the audio from the microphone will be
gathered at agreed times of the day. Again, careful briefing of
the users will be required as are procedures for users to retro-
spectively opt-out of these data collection sessions.

Each user has a dedicated ASR server which will be pre-
loaded with personal acoustic and language models as well as
grammars. To maximise performance we intend to use gram-
mars which restrict the vocabulary according to the given state
the system is in. For example, if the system is operating in
the environmental control mode and the user has just turned on
the guide on the TV, a state-dependent grammar would contain
words needed for navigating the guide, e.g. ’up’, ’down’, ’left’,
’right’, ’ok’ and ’exit’ as well as certain power or meta words
which would allow the user the change state, for example by
saying ’home’ or ’back’.

The ASR server’s recognition technology is built around
an in-house decoder based on weighted finite state transduc-
ers (WFSTs). This decoder was the winner in the NIST meet-
ing recognition evaluations in 2007 and 2008. For details see
[18, 19]. Every recognition cycle (consisting of audio being
recorded, transferred across to the servers and subsequently
recognised) will trigger the possibility of a change of state de-
pendent on the current state and the newly recognised word. To
further support this, the ASR server can dynamically load the
next WFST from a set of pre-computed WFSTs matching all
of the possible states of the system. We plan to expand this to
enable online compilation of WFSTs.

4. Experimental setup
Recruitment of users is underway for the homeService study.
In preparation for setting up dedicated ASR systems for each
user, we have carried out a pilot-study using data from a poten-
tial user, which we recorded during previous studies. This user
(F01) is a female, in her mid fifties at the time the recordings
were made, who has cerebral palsy. Her speech is classified as
spastic dysarthric of a severe nature. She has always been a very
keen participant in our studies, and as such is a valued member
of our extended research team.

We have chosen her as one of the first users in the home-
Service study as she has previously demonstrated that she is a
highly motivated adopter of new technology; she is also a keen
PC user.

She currently uses a switch mounted on the headrest of her
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wheelchair to access her scanning-based environmental control
system and as well as to control her PC via dedicated software.

4.1. Data

F01 has provided speech recordings for two research projects in
the last decade, which is of interest here. These are all isolated
words initially recorded with the aim of providing training ma-
terial for whole word ASR models used in an an ECS system
similar to the primary homeService task. The word lists con-
sisted of isolated words such as ”TV”, ”on”, ”off”, ”channel”,
etc. In total we have 1286 individual word recordings covering
a vocabulary of 33 words (approximately 38 examples of each
word).

In this study we wish to train tri-phone derived word mod-
els, and the ideal training data would be sets of phonetically rich
words or sentences. However, given the nature of this data set
of isolated words, it is possible to quickly create a realistic test
set using examples drawn from the data set.

After a process of initial alignment to remove extraneous
silences, around 40 minutes of data recorded from two different
projects remained; project A provided 23 minutes of 8 kHz data
(for the work here, this data has been up-sampled to 16 kHz)
recorded using a headset microphone (SkyTronic Tie-Clip Mi-
crophone) onto a dedicated Arm-based embedded device (Bal-
loon 3 board with a GEWA PROG III infrared micro chip).
The remaining data from project B was recorded at 16 kHz on
a laptop using a microphone array (the Acoustic Magic Voice
Tracker array) [10].

4.2. Acoustic modelling

All hidden Markov models (HMMs) were trained using the
maximum likelihood (ML) criterion. State-clustered, triphones
having Gaussian mixture models with 16 components per state
were used.

4.3. F01 case study

Although the amount of data we have available from speaker
F01 is relatively small compared to what one would normally
need to train a high-performance, personalised ASR system, it
far exceeds what we could expect to be able to record from a
new homeService user in a typical enrolment session. What
it does do is enable us to explore the effect of having access
to different amounts of data for e.g., adaptation purposes. The
experiments presented here aim to investigate the relationship
between the quantity of training and recognition performance.
When recruiting new users for homeService this will be a useful
indicator of how much enrolment data will need to be recorded
to provide a good, initial operating point.

4.4. Results

First though, it is useful to assess F01’s data in terms of
baseline performance. Table 1 shows some baseline results
for her, where we have tested all of her speech on high-
performance models trained on typical speech meeting data and
on good, speaker-independent models trained on the dysarthric
UASpeech corpus [12]. The achieved accuracies of 8.9% and
13.5% are very low and indicate the severity of F01’s speech
impairment. The UASpeech result is in a range comparable
to what has been reported for some of those speakers as well
[20, 15].

Table 1 also shows the results from using some of F01’s
data to perform a maximum a posteriori (MAP) adaptation from

System Accuracy

Meeting (SI) 8.9 %
Meeting+MAP (SD) 74.7 %
UASpeech (SI) 13.5 %
UASpeech+MAP (SD) 75.5 %

Table 1: Word accuracy rates for baseline systems. Please see
text for further explanation.

the original, speaker-independent meeting models or UASpeech
models [21]. As we have very limited data, the presented accu-
racy is the mean of the accuracies obtained from doing a round-
robin style test using 10 folds of the complete dataset, each hav-
ing a 90%/10% split into an adaptation set and a test set. The
MAP-based systems performed best in precursor experiments
reported in [15] and show large improvements over the baseline
systems with accuracies of 74.7% and 75.5% respectively.

It is important to note that these results were obtained us-
ing more than 1100 words from speaker F01, which is far be-
yond what would be reasonable and realistic to obtain from a
prospective user. This is not only because prolonged periods
of speaking can be tiring for these users, but also it would be a
considerable undertaking to make that many recordings. In our
experience it would take several weeks to collect this quantity
of data.

For projects like homeService, there is a notable trade-off
between not asking participants to endure lengthy enrolment
sessions, whilst still ensuring we can deliver a sufficiently use-
ful level of performance in the first system we deploy. Although
all users will be aware that the systems are not perfect, if it
becomes frustrating to use because of too many errors we run
a real risk of the users rejecting the system (and the study),
thereby breaking the foundations of the ‘virtuous circle’, where
good systems will lead to increased use and data collection.

We therefore wished to investigate how much adaptation
would be needed to get a particular level of performance. Figure
2 shows the results of increasing the amounts of data used for
adapting from the speaker-independent UASpeech and meeting
models respectively.

Both curves follow the same trend, and as expected the ac-
curacy increases with increasing amounts of data (presented as
number of words out of a total of 1158 words in each of the
training/adaptation folds). For the lower number of words there
is a dramatic increase in performance; this can be seen to taper
off approximately at around 300 words. Given F01 here has a
vocabulary of just over 30 words, this corresponds to approxi-
mately 10 instances of each word.

Interestingly, both the UASpeech based and the meeting
model based systems converge on approximately the same, sta-
ble level after about 400 examples, but the initial curve ascends
more slowly for the meeting models, so in situations where
smaller amounts of adaptation data is available the closer mod-
els from UASpeech are a better starting point.

5. Longer-term plans
As the pool of homeService users grows we will continue to
monitor the design choices surrounding the cloud-based setup
including ease of use for the researcher as well as whether the
users’ feel comfortable with the idea of their system being mon-
itored from outside of their home. It will also be interesting to
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Figure 2: Word accuracy as a function of increasing amount of
data used for MAP adaptation of acoustic models; x-axis shows
the number of utterances (each containing a single word) out of
a possible 1158 used for adaptation.

follow how the impact on the success of each individual user’s
virtuous circle.

We see the homeService systems as the first generation of
PALs - Personal Adaptive Listeners. A PAL is a portable, per-
haps wearable, device that belongs to an individual and adapts
to the speech communication characteristics and preferences of
its owner. Like human listeners, it does this whilst in use, does
it quickly and extends its utility over time. A PAL is somewhat
akin to a human valet: It understands its owner’s needs, car-
ries out their wishes and sometimes acts on their behalf. The
technology adapts to its user, rather than the other way round.
Crucially, The owner is able to teach the PAL through spo-
ken dialogues, which develop differently for different owners.
The owner-PAL relationship should be something like training
a dog.

To make the step from homeService to PALs requires spo-
ken dialogues between the owner and the device. Dialogue
management techniques in commercial dialogue systems are
usually hand-crafted, which makes them difficult to adapt. Dur-
ing the last decade it has become fashionable to approach
the dialogue management problem statistically, modelling the
dialogue as a Partially Observable Markov Decision Process
(POMDP) and optimising the dialogue policy with Reinforce-
ment Learning (RL) [22]. This framework provides robustness
against speech understanding errors and automatic learning of
dialogue policy. As the dialogue policy is learned with the data
gathered from interaction with the user, it is optimised for its
specific user, making it a personalised policy. RL permits on-
line learning, so the system can also adapt its policy to changes
in the user behaviour (e.g. when the user becomes more familiar
with the system) and to the changes in the speech understanding
system (e.g. when the ASR improves as more data is gathered).
The user can also explicitly give a reward to the system after
each interaction, ‘teaching’ the system.

The main problem with statistical dialogue management is
its intractability, due to the size of the state space and to the im-
possibility of exact solving the POMDP, but it is possible to use
approximate algorithms to build real sized dialogue systems.
Another problem is the long time that takes to learn a suitable
policy, but recent studies have been able to learn a policy for a

non trivial tourist information system in less than 200 dialogues,
which makes possible learning a policy directly from user inter-
action.

Adapting these techniques for PAL dialogues raises several
interesting issues:

• ’teaching your PAL’ should correspond to seeding the
dialogue statistics.

• A PAL should not make the same mistake twice.
• The owner will know exactly what the PAL understands.
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Abstract
The speech reception threshold (SRT) is the noise level at which
the speech recognition rate of a test person is 50%. SRT mea-
surement is relevant for patient screening, psychoacoustic re-
search and algorithm development in hearing aids and cochlear
implants. In this paper, we report on our efforts to automate
SRT measurement using an automatic speech recognizer. Dur-
ing a test, sentences are presented to the test subject at different
SNR levels. The person under test repeats the sentence and the
keywords it contains are scored by an audiologist. If all key-
words are repeated correctly, the sentence is evaluated as cor-
rect. The SNR level of each sentence is adjusted based on the
previous sentence’s evaluation. Aiming for an objective and re-
peatable measurement, the audiologist’s assessment is replaced
by an automatic speech recognizer’s evaluation. For this pur-
pose, we investigate different finite state transducer structures
to model the expected sentences as well as the impact of several
speaker adaptation schemes on the keyword detection accuracy.
A baseline recognizer using general acoustic models achieves a
performance of 88.8% keyword detection rate. Speaker adapted
acoustic models improve the performance yielding a keyword
detection accuracy of up to 90.7%. Finally, the impact of recog-
nition errors on the estimated SRT value is simulated showing
a minimal impact on the SRT measurement process. Based on
this analysis, it can be concluded that the proposed automatic
evaluation scheme is a viable tool for speech reception thresh-
old measurements.
Index Terms: keyword detection, speaker adaptation, cochlear
implant, speech test, speech reception threshold

1. Introduction
Speech reception threshold (SRT) measurements have been
used in a clinical setting for evaluating a person’s hearing ca-
pabilities and to diagnose hearing loss. The obtained SRT value
is a subjective measure for quantifying the hearing ability of
patients with cochlear implants (CI) in order to adjust the CI
parameters and analyze the impact of new developments in CI
devices on the patient’s hearing abilities [1, 2, 3]. Moreover,
these measurements provide useful data for psychoacoustic re-
search, e.g. to investigate how cognitive load influences speech
recognition of individuals.

Several Dutch speech tests for determining a patient’s
speech recognition threshold have been proposed, e.g. NVA-
tests [4] and LIST-tests [5]. During these tests, words or sen-
tences which are embedded in different levels of noise are pre-
sented to patients and they are asked to repeat what they hear.
The responses are evaluated by an audiologist who decides if

patients properly repeat the presented word or sentence. LIST-
tests consist of ten sentences that are presented to a patient at a
certain noise level. For each sentence, two to five content words
(called keywords henceforth) are defined. Each keyword in the
patient’s response is evaluated by the audiologist and if all key-
words were reproduced correctly (incorrectly), the noise level
in which the following sentence is embedded is increased (de-
creased) by 2 dB resulting in a more (less) challenging recog-
nition task. After ten sentences, the SRT value is obtained by
averaging the SNR levels at which the last six sentences are
presented. This speech reception threshold corresponds to the
point where 50% of the keywords are understood correctly by
the patient.

At the outset of this study, the SRT test procedure was iden-
tified as one that was particularly apt for automation since it
seems feasible to set up an automatic speech evaluation method
that makes significantly fewer errors than the human under test,
who operates around a 50% rate. Hence, errors introduced by
the speech recognizer are expected not to affect the test outcome
significantly. An automated test provides the additional bene-
fit of an objective and repeatable measurement compared to an
audiologist whose evaluation may be biased. Furthermore, au-
tomating this procedure saves a great amount of time in which
audiologists could focus more on their core tasks: providing a
better assistance to CI patients.

Automation of these tests was investigated in [6] by let-
ting the patients type what they have heard while accounting
for spelling errors. A rehabilitation tool for CI users using au-
tomatic speech recognition (ASR) is described in [7]. CI pa-
tients are encouraged to repeat spoken sentences upon which
correctness feedback is provided using ASR. The proposed sys-
tem for SRT tests is similar in recognition task, but differs in the
language model constraints since the main task is to detect the
keywords rather than recognition of the complete utterance. It
also differs from traditional keyword spotting (KWS) [8, 9, 10]
because the knowledge of the embedding sentence can be ex-
ploited while KWS is mainly used for unconstrained and spon-
taneous speech. As the expected utterances are known in the
scope of this paper, the use of deterministic language models is
feasible. The design procedure of these deterministic language
models is presented further in this paper.

We have further investigated the impact of several speaker
adaptation techniques on the keyword detection accuracy. In
this scenario, the data of an earlier SRT measurement session
with the same patient is reused to adapt his/her acoustic models.
Several adaptation methods such as MLLR [11] and constrained
and unconstrained linear mean and covariance transforms [12]
are applied to the speaker independent acoustic models and the
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Figure 1: Two layered speech recognition architecture.

performances of the adapted models are compared.
The rest of the paper is organized as follows. Section 2 in-

troduces the speech recognizer’s architecture and discusses the
design of deterministic language models and the speaker adap-
tation techniques that are applied in the experiments. The ex-
perimental setup is described in Section 3 and the results are
presented in Section 4. Finally, the conclusions are discussed in
Section 5.

2. Automatic Speech Evaluation Scheme
The proposed evaluation scheme uses an automatic speech rec-
ognizer that replaces the audiologist during the SRT measure-
ments. The overview of the ASR that is used for this purpose
is given in Section 2.1. As the expected utterances are known,
deterministic language models with different structures are de-
signed and used during recognition. Section 2.2 details the de-
sign procedure. Finally, several speaker adaptation techniques
are applied to investigate the impact on the recognition accuracy
which is the topic of Section 2.3.

2.1. ASR overview

A two layered HMM-based recognition system as illustrated in
Figure 1 is used for obtaining the word-level recognition output.
In the first layer, a phone recognizer generates a phone lattice
using task-independent acoustic and language models. These
models can be general models that are trained on the data of the
target language. In the second layer, task-dependent informa-
tion is provided in the form of a finite state transducer (FST) de-
scribing lexical and grammatical knowledge. The FST is com-
posed of two levels, namely the word and garbage FSTs mod-
eling the phone level information and the sentence FST con-
taining multiple word and garbage FSTs to model the expected
utterances. This structure comes with increased modularity as
the generic phone recognizer can be used for any recognition
task provided that the task-specific information is contained in
the second stage [13]. Using the task-dependent information
incorporated in the FSTs, the phone lattice obtained in the pre-
vious step is decoded into a word level recognition result which
can further be processed to obtain the keywords that have been
uttered.

2.2. Language model design

The basic FST structure models the expected sentence by allow-
ing the correct utterances of the words in the order they appear
in the prompt. Incorrect or irrelevant utterances are modeled by

the garbage FST. However, due to the nature of SRT measure-
ment tests, it is a requirement to have higher flexibility in the
sentence FST as the patients can repeat the presented words in
arbitrary order or they may skip some of the presented words.
All FSTs consist of a number of nodes and arcs depending on
the number of phones and words in the expected sentence. The
start and end nodes are marked with <s> and </s> respec-
tively. All other nodes are labeled with the keywords: visiting a
state indicates the associated keyword was detected. State tran-
sitions occur upon a match between a word or phrase model (the
edge’s earmark) and a partial path in the phone lattice output by
the first layer. Non-keywords (henceforth filler words), silence
(marked with #) and garbage (marked with GBG) cause a self-
transition. Garbage models any unanticipated speech allowing
any phone sequence. To keep it from being preferred over other
edges, it is penalized with a garbage model cost that is incurred
once upon entry. Based on this principle, three different FSTs
are designed modeling the expected patient’s response, each of
which handles the filler words differently.

In the first model, named the KWandFILLER model, each
filler word is accepted as an input with an arc linked to the node
of the preceding keyword. This model is illustrated with an ex-
ample for the Dutch sentence “MAMA vertelt ons elke AVOND
een kort VERHAAL” (MOM reads us a short STORY every
NIGHT) in Figure 2, where keywords are written in uppercase
characters.

In the KWandLONGFILLER model, only filler words of
sufficient length are added to the model in order to limit the
number of falsely detected filler words. This model is expected
to reduce the false alarms due to short filler words.

The third design, the KWandFILLERSEQ model, contains
a single arc that is associated with all filler words that appear
between two keywords. In this model, the canonical order of
the filler words is taken into account. This could have the ad-
vantage that the filler words are recognized in the correct order
and should prevent (especially short) fillers from erroneously
modeling keywords.

2.3. Speaker adaptation techniques

Speaker adaptation is implemented by linearly transforming the
means and possibly also the covariances of the Gaussians of a
speaker independent (SI) acoustic model. This transform is ob-
tained by maximizing the likelihood of a selection of adaptation
data as described in [11] and [12].

Three different adaptation techniques, namely a linear mean
transform (MLLR), constrained mean and covariance transform
(CMLLR) and unconstrained mean and covariance transform
(UMLLR), are investigated. For MLLR, the means (µ) of the
Gaussians of the SI acoustic models are linearly transformed
with a transformation matrix W : µ̂ = Wξ with ξ = [1 µ]. For
UMLLR, the transformation matrix W of the means (µ) and
the transformation matrix H of the covariances (Σ) are sepa-
rate: µ̂ = Wξ and Σ̂ = HΣHT . In the case of CMLLR, the
transformation A′ applied to the variances (Σ) must correspond
to the transformation A′ applied to the means (µ): µ̂ = A′µ−b′

and Σ̂ = A′ΣA
′T . These transforms are obtained by maximiz-

ing the likelihood of the adaptation data, details of which are
given in [11] and [12].

In each of these adaptation schemes, the states that are
present in the adaptation data should be provided. This infor-
mation is captured in a state segmentation which is generated
from a transcription of the utterance. This transcription is ac-
quired by manual annotation of the data. To avoid this manual
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MAMA vertelt ons elke AVOND een kort VERHAAL.

MAMA

AVOND

VERHAALSTART EIND

mama

mama

mama

avond

avond
avond

verhaal

verhaal

verhaal

#

#

#

#

GBG

GBG

GBG

GBG

<s> </s>

</s>

</s>

Vertelt

een

ons

kort

elke
KWandFILLER

</s>

Figure 2: Example of the KWandFILLER FST model.

intervention, unsupervised adaptation is also considered, where
only sentences that were assessed as correct by the system are
retained as adaptation data.

3. Experimental setup
3.1. Speech data and baseline recognizer

The performance of the baseline system with the presented FST
models and of the system with the adapted acoustic models was
evaluated on recordings that contain the patient’s responses to
LIST-tests performed by normal hearing persons. Utterances
from 17 speakers two of which are non-native Dutch speakers
are captured in a recording cabin used for SRT measurements.
In total, 79 lists are evaluated resulting in 4.64 lists per per-
son on average. For the speakers with enough recorded lists,
speaker adaptation was applied and performance of the speaker
adapted system is evaluated using cross validation to obtain sta-
tistically significant results.

The acoustic models were trained based on the Co-
Gen database ([14]) which contains 7 hours of read speech.
The speaker independent acoustic models are semicontinuous
HMMs with tied Gaussians consisting of 576 states and 10635
Gaussians. The task-independent language model consists of
a trigram phoneme sequence model derived from a Dutch
database with correctly read sentences [15]. The preprocessing
is based on Mel-spectrum analysis and includes cepstral mean
subtraction and discriminant analysis (MIDA) [15] [16].

3.2. Evaluation metrics

When evaluating the quality of the automated CI test, there
are two important errors to consider: not detecting correct sen-
tences on the one hand and classifying a sentence that is incor-
rect as correct on the other hand. Two performance criteria have
been defined: keyword detection rate (KDR) quantifying the

former and false alarm rate (FAR) quantifying the latter. Both
of these metrics are defined at the sentence level, since the SNR
is adapted based on the evaluation of an entire sentence. A sen-
tence is correct if all keywords are repeated correctly by the
patient and incorrect if the patient missed at least one keyword.

KDR =
# of correctly detected sentences

# of correct sentences
(1)

FAR =
# of sentences incorrectly classified as correct

# of incorrect sentences
(2)

4. Results and discussion
4.1. Baseline system

The FSG models presented above are evaluated according to
their performance by means of a KDR-FAR plot in Figure 3.
There are three different operating points obtained by manip-
ulating the phone lattice density. The equal error rate points
are marked with ♦. The KWandLONGFILLER model provides
the worst performance, whereas the other two models perform
similarly. The reason for the bad performance of the KWand-
LONGFILLER model is that it has to use the garbage model to
model the short filler words. The performance of the model is
thus very dependent on the choice of the garbage model cost.
If the garbage model cost is very high, keywords might be de-
tected at the instants where short filler words are uttered. On
the other hand, if the garbage model cost is too low, the garbage
model is often used to explain the utterance resulting in an in-
creased number of keyword deletions. The performance of the
KWandFILLER and KWandFILLERSEQ model are compara-
ble. The KWandFILLER model is the most flexible of the two
allowing patients not to say filler words or repeat them in any
order, though such deviations do not occur often in our data.
Since it is expected that the KWandFILLER model would per-
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Figure 3: Comparison of different FST models for the baseline
system.

form better in case a patient would deviate from the canonical
word order, the KWandFILLER model is the best choice for
practical applications. The equal error rate point is at a FAR of
11.2% and a KDR of 88.8% as indicated in Figure 3.

4.2. Speaker adapted system

The three adaptation techniques described above are imple-
mented and the obtained KDR-FAR curves are illustrated in
Figure 4. The adapted systems perform better than the base-
line at most of the operating points. The equal error rate point
is obtained at a false alarm rate of 9.7% for MLLR, 9.85% for
UMLLR and 9.3% for CMLLR as indicated in the figure.

These adapted models are obtained using the manually an-
notated adaptation data from two LIST-tests (20 sentences). The
adapted models for a certain speaker were tested on the other
recorded lists for that speaker. To obtain enough statistical rele-
vance, cross-validation is applied.

In the case of unsupervised adaptation, only sentences
which were evaluated as correct by the baseline recognizer are
included as adaptation data. When considering two lists per
person, only a limited number of adaptation sentences could be
included. It was not possible however to consider more lists, be-
cause of the limited number of recorded lists per speaker. Here,
the expected utterance is used as the transcription. In Figure 5
the KDR-FAR curves for baseline, supervised and unsupervised
adapted systems are plotted. The adaptation technique that was
applied here is MLLR. The unsupervised adapted system per-
forms worse than the baseline at some operating points. This is
because not enough adaptation data could be included, due to
the limited number of recordings per person. The equal error
rate point for the unsupervised adapted system is obtained at a
false alarm rate of 10.75%, compared to the 9.7% FAR for the
supervised adapted system.

4.3. Theoretical impact of the recognition error on the mea-
sured SRT-value

A LIST test consists of ten sentences, the first of which is pre-
sented at a very low SNR. This sentence is repeated until it is
evaluated as correct. Then, we advance to the next sentence
adapting the SNR at which the sentence is presented according
to the evaluation of the previous sentence. In the end, the mean
of the SNR at which the last six sentences were presented is
taken as the measured SRT-value.

Since the recognizer makes errors by not detecting correct
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Figure 4: Comparison of the adapted system performance
(MLLR, CMLLR and UMLLR) with baseline system using the
KWandFILLER model.
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Figure 5: Comparison of the MLLR-adapted system perfor-
mance (supervised and unsupervised) with baseline system us-
ing the KWandFILLER model.

sentences and falsely evaluating incorrect sentences as correct,
the measured SRT using the automatic procedure will deviate
from the manually obtained value. The effect of the recognizer
error on the final SRT is modeled using performance intensity
functions. These performance intensity functions model the pa-
tient’s score as a function of the SNR at which the sentence
is presented. An example of a performance intensity curve is
given in Figure 6. Based on the input SNR, the probability of
a patient understanding the sentence correctly is determined. A
binomial variable with this probability is drawn indicating the
patient’s evaluation of the sentence. A recognition error is intro-
duced by the speech recognizer which may flip this evaluation
adjusting the SNR in the wrong way. Based on the recognizer’s
evaluation, the next SNR is calculated. By simulating a large
number of lists, we obtain the distribution of the measured SRT-
value with and without a recognizer error. Without introducing
the recognizer error, the mean measured SRT over 300 lists is
found to be -7.8 dB with a standard deviation of 1.2 dB. With
a recognizer error of 10 %, the mean measured SRT becomes -
8.0 dB with a standard deviation of 1.8 dB. The evolution of the
mean and standard deviation of the measured SRT in function of
the ASR’s error rate are presented in Figure 7 and 8 respectively.
It can be seen that the mean measured SRT value deviates fur-
ther from the initial value of -7.8 dB for normal hearing persons
as the recognizer error increases. The standard deviation on the
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Figure 6: Performance intensity curve for a LIST sentence pre-
sented at a certain SNR. (Taken from [5]).
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Figure 7: The mean of the measured SRT as a function of the
speech recognition error.

measured SRT also increases with an increase in the recognizer
error.

When new CI techniques are assessed, a comparative mea-
surement before and after activation of the new component is
performed. In this case, the bias on the measurement observed
when comparing the manual and the automatic test results is of
minor importance. It is important however that measurements
can be conducted with significant accuracy. If desired, the stan-
dard deviation on the measured SRT can be reduced using more
sentences per LIST-test. Using 20 instead of 10 sentences per
LIST, reduces the standard deviation on the measured SRT to
1.13 dB, for a recognizer error of 10%.

Another use of LIST-tests is to assess the hearing of patients
based on their SRT score. In this task, an absolute SRT value is
obtained and hence a bias might lead to inaccurate estimations.
However, when assessing whether a person has normal hearing
or needs some treatment, the differences in SRT scores are so
large that this bias will not lead to a different evaluation.

5. Conclusions
A Dutch CI speech reception threshold test (LIST) has been au-
tomated using automatic speech recognition. The LIST consists
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Figure 8: The standard deviation on the measured SRT as a
function of the speech recognition error.

of ten sentences played at different SNR levels depending on
the evaluation of the previous sentence. The speech reception
threshold is estimated as the mean of the last six SNR levels.

A speaker independent speech recognizer can work at an
operating point with a false alarm rate of 11.2% and keyword
detection rate of 88.8% which are both defined at the sentence
level. Speaker adaptation improves the results to 9.3% false
alarm rate and 90.7% keyword detection rate. The results are
obtained at the equilibrium point on the keyword detection rate-
false alarm rate curve which reduces the impact of recognition
errors on the measured SRT value.

Furthermore, a simulation of the impact of recognizer error
on the SRT estimate is provided. In comparison to a manually
performed test, there is a bias of 0.2 dB on the SRT measured
with the automatic procedure. The standard deviation also in-
creases from 1.2 dB to 1.8 dB. We conclude that these results
are sufficiently small for using the automated test in practice.
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Abstract
Automatic sign language recognition (ASLR) is a special
case of automatic speech recognition (ASR) and computer
vision (CV) and is currently evolving from using artificial lab-
generated data to using ’real-life’ data. Although ASLR still
struggles with feature extraction, it can benefit from techniques
developed for ASR. We present a large-vocabulary ASLR
system that is able to recognize sentences in continuous sign
language and uses features extracted from standard single-view
video cameras without using additional equipment. ASR
techniques such as the multi-layer-perceptron (MLP) tandem
approach, speaker adaptation, pronunciation modelling, and
parallel hidden Markov models are investigated. We evaluate
the influence of each system component on the recognition
performance. On two publicly available large vocabulary
databases representing lab-data (25 signer, 455 sign vocabulary,
19k sentence) and unconstrained ’real-life’ sign language (1
signer, 266 sign vocabulary, 351 sentences) we can achieve
22.1% respectively 38.6% WER.

Index Terms: Continuous Sign Language Recognition, Large
Vocabulary, ASR, Computer Vision, Recognition System

1. Introduction
Sign languages are natural languages that develop in commu-
nities of deaf people around the world and vary from region
to region. A sign consists of manual and non-manual com-
ponents that partly occur in parallel but are not perfectly syn-
chronous [1]. Manual components comprise hand configura-
tion, place of articulation, hand movement and hand orientation
while non-manual components include body pose and facial ex-
pression. ASLR is a subfield of CV and ASR allowing methods
of both worlds to be deployed but it also inherits their respec-
tive challenges. Large inter-/intra-personal signing variability,
strong coarticulation effects, context dependent classifier ges-
tures, no agreed written form or phoneme-like definition in con-
junction with partly parallel information streams, high signing
speed inducing motion blur, missing features and the need for
automatic hand and face tracking make video-based ASLR a
notoriously challenging research field.

Although ASLR is starting to tackle ’real-life’ data, the ma-
jority of work in the community still focusses on the recognition
of isolated signs, particularly in the context of gesture recogni-
tion. Deng and Tsui [2] and Wang et al. [3] use parallel HMMs
to recognize isolated signs in American Sign Language or Chi-
nese Sign Language, respectively, achieving recognition accu-

racies over 90%. Ong et al. [4] use boosted sequential pattern
trees to recognize isolated signs in British sign language (BSL)
allowing to combine partly parallel, not perfectly synchronous,
automatically mined phoneme-like units in the recognition pro-
cess. Pitsikalis et al. [5] extract subunit definitions from lin-
guistic annotation in HamNoSys [6], whereas Koller et al. [7]
employ an open SignWriting [8] dictionary to produce and align
linguistically meaningful subunits to signs in German sign lan-
guage (GSL).

However, in real tasks ASLR is more likely to face contin-
uous signing, that is what this work focusses on. In this con-
text, Cooper et al. [9] compare boosted sequential pattern trees
to HMMs using linguistically inspired subunits and 3D track-
ing information finding that the trees outperform HMMs for
BSL. Forster et al. [10] investigate techniques to combine not
perfectly synchronous information streams within an HMM-
based ASLR system finding that synchronization just at word
boundaries improves the recognition performance. Recogniz-
ing a sign language sentence by spotting individual signs has
been investigated by several authors [11, 12, 13, 14] reporting
promising results. Finally Yang et al. [15] use a nested dynamic
programming approach to handle coarticulation movements be-
tween signs.

Given the cited work and the works described in the sur-
vey on sign language recognition by Ong and Ranganath[16],
two approaches to ASLR are observable. On the one hand,
ASLR is viewed as a pure CV problem neglecting the natural
language processing nature of the task and focussing on devel-
oping tailor-made solutions for gestures. However, we believe
to be soon able to tackle real-world problems, ASLR should
much more be seen as application of ASR, exploiting previous
knowledge gained in that area. Following that track, we pro-
vide systematically gathered knowledge on how to create a large
vocabulary ASLR system for continuous SL evaluating which
techniques from ASR are applicable. Specifically, we investi-
gate the impact of CV and ASR techniques on the recognition
performance. Among others, the impact of the performance of
automatic hand tracking on the recognition performance is in-
vestigated. Tackling the question of suitable features for non-
rigid objects such as the hands, HoG3D [17] features proposed
in the area of action recognition, appearance based features and
learned MLP features used in ASR are investigated. Address-
ing inter signer variability, the technique of automatic signer
adaptation is adopted from ASR (speaker adaptation) and tested
within our proposed large-vocabulary, HMM-based sign lan-
guage recognition system. Additionally, techniques to combine
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Figure 1: Bayes’ decision rule used in ASLR.

partly parallel information streams/modalities are presented and
evaluated. The system and its components are tested in the
context of continuous ASLR for two publicly available, large-
vocabulary databases. One database represents lab-data created
for pattern recognition purposes and one database represents
’real-life’ data recorded from German public TV. Comparing
findings on lab-data and ’real-life’ data we investigate which
findings on lab-data generalize to ’real-life’ scenarios.

2. System overview and features
The ASLR system described here follows the system design
proposed in [18] and is based on Bayes’s decision rule but
differs in several aspects. Specifically, features adapted from
action recognition, learned features, a number of techniques
to combine different modalities within the system, class-based
language models, gap/noise models and signer adaptation tech-
niques for multi-signer data are employed.

The recognition result of the system is the sequence of
words that best fits the trained word models and the language
model (see Figure 1). One has to note that linguistically
this represents a major simplification but the use of gloss an-
notations (see Section 2.1 for a short definition) is a com-
mon practice within the recognition community to deal with
the non-availability of a common writing system for sign lan-
guages. While linguistically motivated writing notations such
as HamNoSys[6] or SignWriting [8] cover information about
different modalities used within sign languages, they are still a
weak labeling scheme for signs because they do not give an
annotation of the movement, facial expression, etc. per time
frame. Furthermore, using glosses as target classes and annota-
tion scheme allows for faster annotation of large amounts sign
language data which is needed for a automatic statistical recog-
nition approach.

Finally, the proposed recognition system has been tested
on the two publicly available databases SIGNUM [19] and
RWTH-PHOENIX-Weather (PHOENIX) [20] for GSL which
are among the biggest datasets available for continuous ASLR.

2.1. Visual modeling

Albeit the cited work on automatic subunit extraction from sign
language videos, it is still unclear how signs can be split into
subunits. Furthermore, the majority of sign language corpora
including those used in this work (see Section 3) is annotated
using glosses effectively labeling the meaning of a sign rather
than its appearance. Therefore, the proposed system is based on

whole-word models. The visual model (VM) of a sign consists
of a left-to-right HMM in Bakis topology [21] where each seg-
ment of the model (each pair of consecutive states) is modelled
by a separate Gaussian mixture model (GMM) with globally
pooled covariance matrix. The number of segments per model
is estimated from manually annotated sign boundaries on the
training data. Due to strong visual pronunciation variances (3
different signs for Sunday exist in GSL), the effect of explicit
visual pronunciation modelling is investigated in Section 3.

2.2. Language models

Language models (LMs) play a crucial role in state-of-the-art
ASR and ASLR systems. Dreuw et al. [18] showed that the
impact of the well-known LM scale on the recognition perfor-
mance of an ASLR system is in the same order of magnitude as
in an ASR system. Therefore, the LM scale is optimized for all
experiments presented in this work.

In contrast to ASR where it is possible to obtain language-
specific almost arbitrarily large text collections for every lan-
guage and domain, here the LM can only be trained on the tran-
scribed training data of any given database for ASLR inherit-
ing the problem of singletons and infrequent signs which often
make up more than 40% of the available vocabulary of typically
200 to 500 signs. Inspired by the idea of class and topic LMs in
ASR [22, 23, 24] and statistical sign language translation [25],
we propose to use classes of visually and contextual similar
signs within the LM. Class selection is based on the analysis
of errors of a baseline system without LM classes. In this work,
all LMs are trained using the SRILM toolkit [26] with modified
Kneser-Ney discounting with interpolation [27].

2.3. Manual and non-manual features

GSL conveys information through manual and non-manual pa-
rameters. Manual parameters comprise both hands’ shape, their
orientation and position. There are two-handed, as well as
single-handed signs. Single-handed signs are usually signed us-
ing the dominant hand which in the databases used in this work
corresponds to the right hand for all subjects in PHOENIX and
all but two in the SIGNUM database.

Manual features: For full coverage of a sign, manual
features of both hands are used as well as non-manual features
of the face and upper-body. To extract hand features, tracking
is performed for both hands separately using a robust tracking
algorithm with decision back-tracing originally proposed
in [28]. Four different kinds of manual features are extracted.
The first one are colored image patches cut out around the
tracked positions of the dominant hand with a size of 32 × 32
Pixel for SIGNUM and 53×65 Pixel for PHOENIX. As second
feature, histograms of oriented image gradients in 3D space
(HoG3D) [17] are extracted using a non-dense spatio-temporal
grid from video volumes of ±4 cropped patches. Third, the
movement trajectory of the right hand is extracted, represented
by the position relative to the nose and the eigenvectors and
eigenvalues of the movement within a time window of 2δ + 1
frames. Fourth, MLP features have been successfully used
in ASR [29] and optical character recognition [30]. Here a
feed-forward network with one hidden layer of 2000 nodes
is trained using frame alignments from a previously trained
HMM system as labels and PCA reduced hand patches in case
of SIGNUM and HoG3D and trajectory features in case of
PHOENIX. The training of the MLP has been performed on
the training set of the HMM system. Cross validation is used to
adjust the learning rate and to avoid over-fitting.
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Non-manual features: Face patches are extracted using the
same tracking approach as described above. Furthermore,
a position and orientation invariant active appearance model
(POIAAM) [31] is fitted to each frame obtaining a 109 di-
mensional shape descriptor, including shape model parameters,
head rotation in space, mouth and eye openings and degrees
of eyebrow raise. Finally, every frame of a video sequence is
scaled down to 32×32 and 53×65 respectively to get a simple
upper body feature as originally proposed in [18].

For all features, temporal context is included by stacking
±4 video frames for SIGNUM and ±2 frames for PHOENIX.
Since the resulting feature dimension is too high to robustly es-
timate HMM parameters, PCA is applied. All features but the
movement trajectory are reduced to 200 dimensions. In case of
the colored hand and face patches PCA is applied to each color
channel (red, green, blue) separately, yielding a final feature di-
mension of 210. The movement trajectory feature itself has only
limited discriminative power and is therefore combined with the
HoG3D features of the right hand.

2.4. Signer adaptation and modality combination

Sign languages use partly parallel, but not perfectly syn-
chronous information streams/modalities to convey meaning.
These modalities must be handled in the recognition process
but it is an open question how to incorporate different modali-
ties within such a system. A similar situation exists in audio-
visual speech recognition (AVSR) where acoustic features and
visual features of the mouth are combined. Following the work
in AVSR, we investigated feature combination (concatenation),
system combination using (i)ROVER [32] as well as combina-
tion between HMMs on state level (synchronous combination)
and at word boundaries (asynchronous combination). Experi-
mental results show that the first two types of combination are
not effective for current ASLR because either the resulting fea-
ture space dimension is too high or the systems make too similar
recognition errors [10]. Here, only results for synchronous and
asynchronous combination are presented.
Signer adaptation: ASR systems trained on different speak-
ers have to address the speakers’ voice and speech patterns to
achieve good recognition performance. A common approach is
to use speaker adaptive training (SAT) and learn speaker depen-
dent feature transformation matrices using constraint maximum
likelihood linear regression (CMLLR). Analogous to ASR,
ASLR has to tackle signing styles. Therefore, SAT/CMLLR
is evaluated in the context of ASLR for 25 signers.

3. Experimental results
The SIGNUM database [19] contains lab recordings of 25 sign-
ers wearing black long-sleeve clothes in front of a dark blue
background signing predefined sentences. Videos are recorded
at 780× 580 Pixel and 30 frames per second (fps). Each signer
signs the 603 unique training and 177 testing sentences once,
whereas they are signed thrice in the single signer setup. 3.6%
of the glosses are out of vocabulary (OOV). Table 1 shows
statistics of the single signer setup only. The multi signer setup
has the same vocabulary and OOV rate but 15k sentences (92k
running glosses) for training and 4.4k sentences (23k running
glosses) for testing. If not stated explicitly otherwise, all pre-
sented SIGNUM results refer to the single signer setup.

The PHOENIX [20] database contains ’real-life’ sign lan-
guage footage recorded from weather-forecasts aired by the

Table 1: Statistics for SIGNUM single signer and PHOENIX
SIGNUM PHOENIX

Train Test Train Test
# sentences 1809 531 304 47
# running glosses 11,109 2805 3309 487
vocabulary size 455 - 266 -
# singletons 0 - 90 -
# OOV [%] - 3.6 - 1.6
perplexity (3-gram) 17.8 72.2 15.9 34.9

public German TV-station PHOENIX. ’Real-life’ is meant from
a computer vision point of view, where the signers were not ar-
tificially restricted in any sense in their signing (sentence struc-
ture, choice of vocabulary, size and intensity of signs, . . . ) and
where the recording conditions have a much larger variance than
on other signing corpora (lighting, camera-signer position, . . . ).
The video footage has not been created for pattern recognition
purposes or linguistic research. From a linguistic point of view
the employed language has to be classified as non-native, as
the signer is a hearing interpreter, whose parents are deaf. The
videos (210× 260 Pixel, 25 fps interlaced) show the interpreter
wearing dark clothes in front of an artificial gray gradient back-
ground and pose a strong challenge to CV and ASLR due to
high signing speed (majority of signs spans less than 10 frames),
strong coarticulation effects and more than 30% of the vocabu-
lary being singletons. Statistics of both databases are shown in
Table 1.

The system is trained using maximum likelihood and the
EM-algorithm. The number of Gaussian densities and the
LM-scale are optimized. For PHOENIX, the system uses
1433 emission distributions with a total of 4k Gaussians and
a globally pooled covariance matrix. The same applies to
SIGNUM, but the numbers are 1366 emission distributions
with 24k Gaussians for single signer and 198k for multi-signer.
Recognition uses word-conditioned tree search and Viterbi
approximation.

Basic Features: In order to build a well performing ASLR
system, the feature selection plays a crucial role. The full
video images can be seen as a global descriptor of manual and
non-manual parameters and are, thus, a good starting point. As
the hands are known to carry the most information in signing,
tracked and cut out hand patches have often been preferred
[18] over full frames. Comparing both features, hand patches
outperform full images on both databases (see Table 2, Row 1).

Model length estimation: In ASR, the HMM model of a word
is formed by the linked models of the word’s subunit HMMs.
Thereby, the typical temporal length of a word is modelled.
This approach is not yet possible in ASLR because the defini-
tion and extraction of subunits is still an open research question.
PHOENIX includes word boundary annotations from which the
number of segments for each gloss HMM can been estimated by
choosing the median of the lengths minus 20% and adjusting
the length in case the adapted median is shorter than the short-
est utterance of the gloss. The hand patch baseline presented
above uses this approach. Using uniform length for all glosses,
the recognition result is 60.8% instead of 55.0% WER. ’Boot-
strapping’ the initial system alignment using the word boundary
ground truth, we achieve 57.5% WER.

No word boundary ground truth is available for SIGNUM.
Model length estimation is performed using statistics on the
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Table 2: WERs for competing features (Rows 1.-6.), WERs
without and with specific techniques (Rows 7.-11.). ’+’ denotes
a synchronous, asynchronous or feature combination. Please
see corresponding text parts for explanations. HoG3D uses
tracked hand locations. For PHOENIX, in rows 3.-5., manual
ground truth annotation has been used instead.

Competing Features PHOENIX SIGNUM
1. Full image Hand patch 80.1 55.0 31.6 16.0
2. Hand patch HoG3D 55.0 49.7 16.0 12.5
3. HoG3D +Traj 45.2 42.1 12.5 14.2
4. HoG3D+Traj +Face 42.1 41.9 14.2 14.2
5. HoG3D +Full 45.2 45.2 12.5 10.7

Impact of Techniques WER [%] WER [%]
6. Model Length Estimation 60.8 55.0 16.0 17.5
7. Temporal Context 51.3 49.7 12.7 12.4
8. MLP 39.8 43.3 16.0 13.0
9. Manual Tracking Annotation 55.0 48.3 – –

10. Gap Models 42.1 39.8 – –
11. Class LM 39.8 38.6 – –

frame alignment of an HMM system with uniform length.
No improvement over uniform length is observed due to the
estimation on the frame alignment having limited accuracy and
the signs in the video already sharing a similar length.

Visual pronunciation variants: Sign languages exhibit strong
pronunciation variation which manifest in visual sign vari-
ants. Visual variants are not explicitly labeled in PHOENIX or
SIGNUM. While in SIGNUM no variants exist because of the
artificial nature of the database, PHOENIX shows high variabil-
ity within signs annotated by the same gloss. This arises mainly
from the interpreter mixing different dialects.

We have manually annotated the variants with regard to
the visual appearance and the motion of the hand yielding
on average 2.7 variants per gloss and a total of 711 different
variants. Using these annotations, each variant is modelled
by a distinct HMM with model length estimation achieving
56.5% WER in contrast to the baseline of 55.0%. Further, both
systems outperform the 62.2% WER of a ’nearest-neighbor’
style system where each gloss occurrence is modelled indepen-
dently. Apparently, increasing the number of dedicated HMMs
per gloss worsens recognition. Coherent manual definition
of variants is likely to be a problematic factor, as well as the
HMMs not generalizing well over unseen data because of the
reduction in training data per HMM and strong coarticulation
effects.

Tracking Influence: The presented hand patch baselines rely
on tracking to localize the hands of the signer. Tracking is not
perfect and errors propagate through the recognition system.
Figure 2 shows the impact of tracking quality measured in
tracking error rate (TrackEr) [28] counting a tracked position as
wrong if it differs by more than 20 Pixel from ground truth on
ASLR for PHOENIX. The TrackEr of 0 at 48.3% WER refers
to using ground truth tracking annotation (see Table 2, Row 9).

HoG3D: HoG3D features encode the shape and its change over
time of a tracked hand. The latter aspect is not covered by hand
patch features. Further, HoG3D features are more compact than
hand patches, and robust against local illumination changes.
Comparing to the hand patch baselines, recognition results are
improved from 55.0% to 49.7% WER for PHOENIX and from
16.0% to 12.5% WER for SIGNUM. The result on PHOENIX
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Figure 2: Solid Black: Influence of tracking performance in
TrackEr on WER for PHOENIX using right hand patches fea-
tures (read top x-axis vs. left y-axis). Dotted: Impact of tempo-
ral context using HoG3D (right hand) on WER for PHOENIX
(read bottom x-axis vs. left y-axis). Dashed: Impact of tem-
poral context using HoG3D (right hand) on WER for SIGNUM
(read bottom x-axis vs. right y-axis)

is almost as good as using ground truth tracking information
for the hand patches.

Temporal Context: The temporal context of a feature includes
information that cannot easily be learned by an HMM system
but has been shown to improve results in ASR [33].

Although HoG3D features already incorporate temporal
context, we find that including additional context benefits the
recognition, as can be seen in Figure 2. More context than ±2
frames degrades recognition accuracy on PHOENIX, capturing
too much information of the following glosses. On SIGNUM,
we observe only marginal recognition improvement indicating
that the context included in HoG3D is sufficient. The chosen
system defaults are at ±2 frames for PHOENIX and ±4 frames
for SIGNUM and are, thus, well chosen for both cases.

Modalities: In addition to the body pose (full image) and the
right hand (HoG3D), we evaluate the performance using fa-
cial expressions (POIAAM), the left hand (HoG3D) and the
movement of the right hand (Traj). For both databases, the
left hand tracking quality is worse than the right hand. Hence-
forth ground truth tracking annotations are used for PHOENIX
to avoid tracking bias. Thus, the HoG3D baseline improves
to 45.2% WER. Using left hand features 63.9% respectively
51.0% WER are achieved for PHOENIX and SIGNUM. The
stronger recognition degradation for PHOENIX reflects the dif-
ficulty of the database. With facial features, the recognition
result is 62.6% respectively 89.3% WER for PHOENIX and
SIGNUM. The high WER for SIGNUM is due to the fact that
hardly any facial expressions are present here. Concatenating
movement trajectory and right hand HoG3D, results are im-
proved for PHOENIX but not for SIGNUM (Table 2, Row 3).

Using synchronous (Table 2, Row 4) and asynchronous
(Table 2, Row 5) modality combination techniques, recognition
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results for both databases are improved if the respectively best
single modalities are combined. For a full overview of modality
combination techniques and results refer to [10].

Gap Models: The SIGNUM database is designed to con-
tain only one-handed signs and no switching of the hand.
Contrarily, in PHOENIX signers partly switch hands and use
the left hand for signing while holding the right. This effect
introduces missing features in the information stream of the
right and left hand. One way to remedy this problem is to
borrow the idea of noise models from ASR and to augment
the system’s vocabulary by two such models. One model
subsuming signs performed by the left hand only and one for
long gaps between signs of more than five frames that are part
of the sentence but do not belong to either neighboring sign.
The training data annotation is automatically augmented by
labels for both aspects using ground truth annotation. Using
these gap models, the WER is improved from 42.1% to 39.8%
on PHOENIX, due to the models only being populated with
clean and complete data. Further, we observe an improved
feature to HMM state alignment (measured as distance to the
ground truth annotation).

MLP-tandem: The MLP-tandem approach was evaluated for
SIGNUM and PHOENIX. For SIGNUM the MLP is trained on
hand patch features resulting in 13.0% WER that outperforms
the baseline by 3%. This result is comparable to the 12.5%
obtained using HoG3D features. For PHOENIX, the MLP is
trained on concatenated HoG3D with Trajectory features. The
recognition result is with 43.3% WER (at ± 1 frame temporal
context) 3.5% worse than the baseline of 39.8% obtained by
the HoG3D+Traj features alone. Including more temporal
context does not help because it is already included in the MLP
posterior estimates. Two aspects feature into the performance
of the MLP features on PHOENIX. On the one hand, it is not
clear if the MLP can reliably extract the relevant information
from the HoG3D+Traj features although following the ASR
praxis of using the best feature available. On the other hand,
the MLPs for PHOENIX and SIGNUM have about the same
number of parameters but the MLP on SIGNUM is trained
using ten times the data of PHOENIX. Anyhow, the results
show that MLP features as used in ASR achieve comparable
results to specialized features from CV although requiring
training themselves.

Class LM: With regard to PHOENIX the analysis of the recog-
nition errors showed that 3.8% absolute of all errors are due to
misclassified numbers and 2.2% absolute are due to orientations
such as north. Further, both classes appear in a specific context
such as a number before the gloss TEMPERATURE which is
not adequately captured by sign-level LMs. Additionally, num-
bers have a low frequency in the LM training data appearing on
average less than ten times. Augmenting the LM for PHOENIX
with a class for numbers, the perplexity (PPL) on the test data
is reduced from 34.9 to 29.3. Orientations reduce PPL to 31.2
and using both classes PPL is reduced to 25.7.

Table 3 shows that using the orientation category the recog-
nition performance is only marginally improved but using the
number category alone improves the overall recognition result
by 1.2% WER. Other categories as used in sign language trans-
lation [25] did not improve results. For SIGNUM, class LMs
have not been used because of the special and artificial struc-
ture of the sentences.

Table 3: Class LM results for PHOENIX. Error rates in %.
Class del/ins WER
None 20.7/4.5 39.8
Orientation 18.1/5.3 39.2
Numbers 19.3/4.1 38.8

+ Orientation 16.2/6.2 38.6

Signer adaptation: Applying the findings on SIGNUM single
signer to the case of 25 signers and using tracked hand patches
of the right hand as features, the system achieves 23.6% WER.

In ASR SAT is used to adapt the features to better fit the
learned models. In the same fashion, we use SAT to adapt the
baseline system to the signers sign patterns. In a second train-
ing pass, signer specific feature transformation matrices are esti-
mated using CMLLR. In SIGNUM the signer ids are annotated
and hence no signer clustering is performed.

Using the signer ids of the test data, it is possible to evaluate
what is the maximal achievable improvement in terms of WER
using SAT/CMLLR on the given test data. In the typical recog-
nition setup the ids of the signers in the test data are not known
and the resulting improvement is lower due to errors in the clus-
tering process. Adapting the proposed recognition system build
for the SIGNUM multi-signer database using SAT/CMLLR, the
WER of 23.6% is improved to 22.1% showing that the standard
approach from ASR is applicable to ASLR without any modifi-
cations.

4. Summary and conclusion

In this work, a large-vocabulary ASLR system for continuous
sign language using single-view videos as well as the process
of feature selection, technology transfer from ASR and CV and
system design have been presented. Techniques from ASR and
CV have been evaluated in the context for ASLR for challeng-
ing ’real-life’ data and data designed for pattern recognition.

Some aspects were found to generalize over both data sets:
HoG3D alone outperforms all other tested features with MLPs
being a close second. The combination of the two best single
performing modalities achieves the best combination result and
the system benefits from including temporal context in features.

Other findings are related to particularities of the given cor-
pora: On PHOENIX, gap models improve results but use spe-
cific annotations not necessarily available in other corpora. The
improvement by class LMs exploits domain-specific knowledge
and model length estimation relies on accurate sign boundaries.

To sum up, the WER on ’real life’ data has been reduced
from over 80% to 38.6% and on lab data from over 30% to
10.7% for single signer and to 22.1% for multi signer. Although
this might sound very high compared to the state-of-the-art in
ASR, this is one of the first times that recognition results have
been published on ’real-life’ data. We believe that our work
helps pushing ASLR towards more realistic application scenar-
ios, which come along with challenges most of the current sign
language data sets ignore. This goes especially for the use of
single-view video material in contrast to using special hardware
such as bulky cyber gloves, or stereo cameras.

Future work will investigate sub units and coarticulation ef-
fects.
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Abstract
Narrative speech can provide a valuable source of infor-

mation about an individual’s linguistic abilities across lexical,
syntactic, and pragmatic levels. However, analysis of narrative
speech is typically done by hand, and is therefore extremely
time-consuming. Use of automatic speech recognition (ASR)
software could make this type of analysis more efficient and
widely available. In this paper, we present the results of an
initial attempt to use ASR technology to generate transcripts
of spoken narratives from participants with semantic dementia
(SD), progressive nonfluent aphasia (PNFA), and healthy con-
trols. We extract text features from the transcripts and use these
features, alone and in combination with acoustic features from
the speech signals, to classify transcripts as patient versus con-
trol, and SD versus PNFA. Additionally, we generate artificially
noisy transcripts by applying insertions, substitutions, and dele-
tions to manually-transcribed data, allowing experiments to be
conducted across a wider range of noise levels than are pro-
duced by a tuned ASR system. We find that reasonably good
classification accuracies can be achieved by selecting appropri-
ate features from the noisy transcripts. We also find that the
choice of using ASR data or manually transcribed data as the
training set can have a strong effect on the accuracy of the clas-
sifiers.
Index Terms: automatic speech recognition, classification, pro-
gressive aphasia

1. Introduction
Primary progressive aphasia (PPA) is a neurodegenerative dis-
order in which language is the most affected aspect of cognitive
functioning. There are two main variants of PPA: progressive
nonfluent aphasia (PNFA), in which speech is hesitant and ef-
fortful, and semantic dementia (SD), in which speech is flu-
ent but with severe word findings difficulties [1]. A third sub-
type, logopenic progressive aphasia, has been identified in re-
cent years but is not considered here.

The features of narrative speech in each variant of PPA have
been characterized to some extent, but they are not yet fully un-
derstood. Evaluation of spoken output is an important part of di-
agnosis of PPA and in identification of the variant. From a clin-
ical perspective, analysis of narrative speech has the advantage
that it can provide a lot of information from a relatively brief
assessment. A narrative speech sample can contain rich infor-
mation about the speaker’s ability to choose appropriate content
and function words, construct sentences, and convey meaning.
Systematic analysis of narrative speech is typically done manu-
ally, which is time-consuming and may be prohibitively expen-
sive. The automated approach evaluated here has several advan-

tages. For example, this method enables simultaneous consid-
eration of multiple aspects of speech. Also, it should ultimately
provide greater sensitivity to changes occurring in the earliest
stages of disease, thereby facilitating early diagnosis. Simi-
larly, it should provide objective measures of changes over time
in language production, thereby enabling more accurate assess-
ment of disease progression; this is important for patients and
their families, as well as for evaluation of efficacy in drug trials
(as potentially disease modifying drugs become available).

Fully automated analysis of narrative speech will require
automatic speech recognition (ASR) in order to extract lexical
and syntactic features from acoustic signals. Despite major im-
provements in ASR technology over the past few decades, ac-
curacy for unrestricted (i.e., ‘dictation-style’) speech remains
decidedly imperfect, as described in the next section. In order
to estimate how effective a classifier of PPA and its subtypes
might be when given textual transcripts derived from ASR, a
wide range of potential system performances must be consid-
ered, to account for real-world variation. This research approxi-
mates various levels of ASR performance by randomly corrupt-
ing human transcripts according to pre-defined levels of error
and compares these results against actual output from a lead-
ing commercial dictation system. Error levels are quantified by
word-error rate (WER), which is the total number of erroneous
insertions, deletions, and substitutions of words in an ASR tran-
script, divided by the total number of words in a reference tran-
script1. Simulated ASR errors have been used in various con-
texts, such as training dialogue systems [2] and for testing the
safety of dictation systems for use in automobiles [3].

2. Related Work
In general, the accuracy of ASR systems on elderly voices tends
to decrease with the age of the speaker [4]. Elderly voices
typically have increased breathiness, jitter, shimmer, and a de-
creased rate of speech [4]. Older speakers may also exhibit ar-
ticulation difficulties, changes in fundamental frequency, and
decreased voice intensity [5]. These factors can result in speech
that is less intelligible to both human listeners and ASR sys-
tems. For example, Hakkani-Tur et al. [6] found that in auto-
matic scoring of a speech-based cognitive test, their ASR sys-
tem had a higher WER for healthy speakers over the age of 70
than for those under the age of 70, with WERs between 26.3%
and 34.1% for the elderly speakers, depending on the task and
the gender of the speaker, while the error rates ranged between
21.1% and 28.2% for the younger speakers.

1If the number of insertions is large, it can overwhelm the total num-
ber of words in the reference transcript, therefore allowing for WERs
above 100%.
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Effective speech recognition can be further challenged by
the presence of linguistic impairments such as those occurring
in PPA. To our knowledge, there has only been one previous
study on automatic speech recognition of PPA speakers. Peint-
ner et al. [7] analyzed speech from patients with PNFA and SD
as well as patients with a dementia affecting behavior and de-
portment, but not language. They achieved a WER of 37% for
SD and 61% for PNFA. They also tested a control group, who
had an average WER of 20%.

In this study, we use speech recognition as the input to a
system that can analyze a spoken narrative and predict whether
the speaker is cognitively normal or has a subtype of PPA. Peint-
ner et al. [7] also attempted this task, although they did not re-
port how the high error rates affected the lexical features stud-
ied or their classification accuracy. Other studies in this area
have used manually transcribed transcripts [8]. One strategy
which combines ASR technology with manual transcripts is to
use forced-alignment with manual transcripts to measure acous-
tic features such as rate of speech and length of pauses [9, 10].
However, for a speech analysis system to be available online or
as part of an in-home continuous monitoring system, there must
be no reliance on manual transcriptions at the word-level, which
forced-alignment requires.

3. Data

3.1. Narrative samples

Our data set comprises speech samples from 24 patients with
PPA and 16 age- and education-matched controls. Of the 24
PPA patients, 14 were diagnosed with PNFA and 10 with SD.
The speech samples were collected as part of a longitudinal
study on language impairment in PPA in the Department of
Speech-Language Pathology at the University of Toronto. See
Table 1 for demographic information about the participants.

Narrative speech samples were elicited following the proce-
dure described by Saffran et al. [11]. Participants were given a
wordless picture book of the well-known fairy tale “Cinderella”,
and were asked to look through the book. The book was then
removed, and participants were asked to tell the story in their
own words.

The narrative samples were recorded on a digital audio
recorder, and transcribed by trained research assistants. The
manual transcriptions include filled pauses, repetitions, and
false starts. Sentence boundaries were marked according to se-
mantic, syntactic, and prosodic cues. The SD patients produced
an average of 380 words and 20 sentences, the PNFA patients
produced an average of 302 words and 16 sentences, and the
control group produced an average of 403 words and 16 sen-
tences.

SD
(n = 10)

PNFA
(n = 14)

Controls
(n = 16)

Age 65.6 (7.4) 64.9 (10.1) 67.8 (8.2)
Years of education 17.5 (6.1) 14.3 (3.6) 16.8 (4.3)
Sex 3 F 6 F 7 F

Table 1: Demographic information for each participant group.
Averages (and standard deviations) are given for age and years
of education.

3.2. Features

Two types of features are extracted for each participant individ-
ually, namely textual transcripts and acoustic samples. From
these, we derive 31 lexical/syntactic features from the text tran-
scripts and 23 features from the acoustics, giving a total of 54
available features, described below.

3.2.1. Text features

A number of features can be extracted from the text transcripts.
Some of our features are based on the part-of-speech (POS) tags
assigned by the Stanford tagger [12]. SD patients have been
observed to produce proportionally fewer nouns and more verbs
and pronouns, while PNFA patients tend to produce more nouns
and fewer verbs [13, 14, 15]. PNFA patients also tend to omit
function words, such as determiners or auxiliaries [13, 16].

We look up the frequency of each word in the SUBTL
norms, which are derived from a large corpus of subtitles from
film and television [17]. We calculate the average frequency
over all words as well as specically for nouns and verbs. Simi-
larly, we calculate the average familiarity, imageability, and age
of acquisition of the words in each transcript using the com-
bined Bristol norms and Gilhooly-Logie norms [18, 19]. Each
word in these psycholinguistic databases has been ranked ac-
cording to human perception of how familiar the word is, how
easily the word evokes an image in the mind, and the approx-
imate age at which a word is learned. Frequency, familiarity,
imageability, and age of acquisition have all been found to in-
fluence speech production in aphasia [14, 20, 21, 22, 23]. The
coverage of these norms on our data is variable. The frequency
norms have excellent coverage – between 0.92 and 0.95 across
the three groups on the manually transcribed data. The cov-
erage for the familiarity, imageability, and age of acquisition
norms is not as good, possibly due to the fact that the authors of
the norms specifically excluded high frequency words [18]. The
coverage for those norms ranges from 0.25 to 0.31 for all con-
tent words across the three groups for the manual transcripts.

From the transcripts we also measure such quantities as the
average length of the words and the type-token ratio, as well
as measures of fluency such as the number of filled pauses
produced. We measure the combined occurrence of all filled
pauses, as well as the individual counts for “um” and “uh”, since
it has been suggested that they may indicate different types of
hesitation [24].

In previous work using manual transcripts, researchers have
also examined measures which can be derived from parse trees,
such as Yngve depth, or the number and length of different syn-
tactic constructions [8, 9]. However, such parse trees will de-
pend on the location of the sentence boundaries in the transcript,
the placement of which can be a difficult task for ASR systems
[25]. Indeed, the Nuance system used here does not place punc-
tuation except by explicit command. For the purposes of this
preliminary study, we avoid using features which depend on ac-
curate sentence boundaries.

3.2.2. Acoustic features

We follow the work of Pakhomov et al. [10] and measure pause-
to-word ratio (i.e., the ratio of non-silent segments to silent seg-
ments longer than 150 ms), mean fundamental frequency (F0)
and variance, total duration of speech, long pause count (> 0.4
ms), and short pause count (> 0.15 ms and < 0.4 ms). To this
we add mean pause duration and phonation rate (the amount of
the recording spent in voiced speech) [9], as well as the mean
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and variance for the first 3 formants (F1, F2, F3), mean instan-
taneous power, mean and maximum first autocorrelation func-
tion, skewness, kurtosis, zero-crossing rate, mean recurrence
period density entropy (a method for measuring the periodic-
ity of a signal, which has been applied to pathological speech
generally [26]), jitter [27], and shimmer.

Slow, effortful speech is one of the core symptoms of
PNFA, and apraxia of speech can be an early feature [1]. PNFA
patients may make speech sound errors and exhibit disordered
prosody [1, 28]. Similarly, typical F0 range and variance have
been shown to be indicative of articulatory neuropathologies
within the context of speech recognition [29, 30]. In contrast,
speech production is generally spared in SD, although SD pa-
tients may produce long pauses as they search for words [13].

4. Methods
4.1. ASR and simulated errors

We use two methods to produce errorful textual transcripts. The
first method represents the current leader in commercial dic-
tation software, Nuance Dragon NaturallySpeaking Premium;
here, audio files are transcribed by Nuance’s desktop dictation
software. The second method corrupts human-produced tran-
scripts according to pre-defined levels of WER; this method al-
lows for an indirect approximation of the performance given a
wide range of potential alternative ASR systems.

The Nuance Dragon NaturallySpeaking 12.5 Premium for
64-bit Windows dictation system (hereafter, ‘Nuance’) is based
on traditional hidden Markov modeling of acoustics and, his-
torically, on trigram language modeling [31]. This system is
initialized with the default ‘older voice’ model suitable for indi-
viduals 65 years of age and older. The default vocabulary con-
sists of 150,478 words, plus additional control phrases for use
during normal desktop dictation (e.g., “new paragraph”, “end
of sentence”); this feature cannot be deactivated. The core vo-
cabulary, however, can be changed. In order to get a more re-
stricted vocabulary, all words used in our manually transcribed
Cinderella data set plus all words used in a selection of 9 stories
about Cinderella from the Gutenberg project (totalling 22,168
word tokens) were combined to form a reduced vocabulary
of 2633 word types. Restricted vocabularies, by their nature,
have higher random baselines and less phonemically confusable
word pairs, usually resulting in proportionally higher accuracies
in ASR. The Nuance system scales the language model to the
reduced vocabulary.

For the simulated ASR transcripts, each word in the man-
ual transcript is modified with a probability equal to the desired
WER. In this set of experiments, we use a language model ob-
tained from the Gigaword corpus [32], since the Nuance lan-
guage model is proprietary and not accessible to the user. A
word w can be modified in one of three ways:

• Substitution – w is replaced with a new word wS .

• Insertion – w is followed be a new word wI .

• Deletion – w is removed.

In the case of insertion, the word to be inserted is chosen ran-
domly according to the bigram distribution of the language
model. That is, words that frequently occur after w are more
likely to be chosen as wI . If w is not found in the Gigaword vo-
cabulary, then wI is chosen randomly according to the unigram
distribution of the language model. In the case of substitution,
the new word is randomly chosen from a ranked list of words

with minimal phonemic edit distance from the given word, as
computed by the Levenshtein algorithm.

Once it has been determined that a word will be modified,
it is assigned one of the above modifications according to a pre-
defined distribution. Different ASR systems may tend towards
different distributions of insertion errors (IE), substitution errors
(SE), and deletion errors (DE). We create data noise according
to three distributions, each of which favours one type of error
over the others: [60% IE, 20% SE, 20% DE], [20% IE, 60%
SE, 20% DE], and [20% IE, 20% SE, 60% DE]. We then also
adjust these proportions according to proportions observed in
Nuance output, as described in Section 5.

4.2. Classification

We use stratified leave-one-out cross-validation to test our di-
agnostic classifiers. For each fold, one transcript is removed as
test data. We then apply a simple feature selection algorithm to
the remaining transcripts: we calculate a Welch’s t-test for each
feature individually and determine the significance of the dif-
ference between the groups on that feature. We then rank each
feature by increasing p-value, and include as input to the clas-
sifier only the top ten most significant features in the list. For
each fold, different training data is used and therefore differ-
ent features may be prioritized in this manner. Similar methods
for feature selection have been used in previous studies on the
classification of dementia subtypes [7, 9, 33].

Once the features have been selected, we train three types
of classifier: naı̈ve Bayes (NB), support vector machine with
sequential minimal optimization (SVM), and random forests
(RF). The classifiers are then tested with the same subset of
features derived from the held-out transcript. This procedure
is repeated for every transcript in the data set, and the average
accuracy is computed.

We consider two classification tasks, PPA-vs.-control and
SD-vs.-PNFA, since these binary tasks allow for less confusion
than a trinary classification task and can be cascaded. For each
task, there are two possible feature sets: text features only, or a
combination of text and acoustic features. There are also two
possible training sets for each task: i) the classifiers can be
trained on the human-transcribed data and tested on the ASR
data2, and ii) the classifiers are both trained and tested on the
noisy ASR (or simulated ASR) data. We test our classifiers on
each combination of these variables.

5. Results
5.1. Features and feature selection

First, we examine whether the feature selection method selects
different types of features depending on the WER. It might be
expected that as the WER increases, the text features will be-
come less significant. Figure 1 shows the p-values, averaged
across folds, for the text and acoustic features selected at each
WER for each noise distribution. Note that the values of the
acoustic features do not change with the noise levels, but the
average p-value will change as different features are selected in
each case, depending on the values of the text features. For the
case of PPA versus controls, a mix of text and acoustic features
are chosen, and the features tend to be significant at p < 0.05,
even when the error rate is high. A combination of text and
acoustic features are also selected for SD versus PNFA at all

2This represents the scenario in which researchers have access to a
corpus of manual transcriptions for training purposes
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noise levels; however in this case the mean p-values are of-
ten not significant, suggesting that the features are not as dis-
criminative between these groups. This effect is reflected in the
lower classification accuracies for the SD versus PNFA task re-
ported below. So, Figure 1 does not support the hypothesis that
text features become irrelevant at the highest noise levels, but
rather suggests that the transcripts still contain some informa-
tion which is at least as valuable as the acoustic information in
the speech signal.

p-value PPA
mean

Control
mean

Nuance default vocabulary
verb imageability 0.0006 401 354
noun frequency 0.002 3.51 3.26
noun familiarity 0.04 575 558
Nuance reduced vocabulary
average word length 0.003 5.44 6.21
noun frequency 0.006 3.13 2.77
noun imageability 0.01 487 554
noun familiarity 0.02 558 531
frequency 0.04 3.60 3.20

Table 2: Significant text features (p < 0.05) for PPA vs. Con-
trols using the Nuance system with default and reduced vocab-
ularies.

p-value SD
mean

PNFA
mean

Nuance default vocabulary
noun familiarity 0.002 596 560
familiarity 0.002 594 568
Nuance reduced vocabulary
None N/A N/A N/A

Table 3: Significant text features (p < 0.05) for SD vs. PNFA
using the Nuance system with default and reduced vocabularies.

Some text features are still significant in the Nuance data
as well, despite the high WER. Table 2 shows the text features
that were significant (p < 0.05) when comparing PPA and con-
trols using the two Nuance models. As before, since the feature
set changes with each fold in the cross-validation, the p-value
is an average across folds. The means for the two groups are
also shown to indicate the direction of the difference. Using the
default vocabulary, there are three significant text features: verb
imageability, noun frequency, and noun familiarity. These three
features are all significant in the manually-transcribed data as
well, and with the same direction. For the system trained on the
reduced vocabulary, there are five significant text features, as in-
dicated, only one of which (noun imageability) is not significant
in the manual transcripts. All five features show differences in
the same direction. Table 3 shows that only noun familiarity
and overall familiarity are significant in the SD vs. PNFA case
using the default vocabulary system, as they are in the manu-
ally transcribed data, with the difference in the same direction.
There are no significant text features using the reduced vocabu-
lary system.

The significant acoustic features for each classification task
are shown in Tables 4 and 5. These features remain the same re-
gardless of the transcription method. For a complete discussion
of the acoustic features of this data set, see [33].

p-value PPA
mean

Control
mean

phonation rate 0.0000006 0.733 0.920
mean duration of

pauses
0.00002 37 800 14 500

mean recurrence
period density
entropy

0.00002 0.549 0.477

long pause count 0.0006 34.7 10.6
skewness 0.0006 -0.0733 -0.532
mean instantaneous

power
0.0003 -26.1 -22.1

short pause count 0.002 49.9 22.1
kurtosis 0.005 20.4 14.1
shimmer 0.05 0.00560 0.00748

Table 4: Significant acoustic features (p < 0.05) for PPA vs.
Controls.

p-value SD
mean

PNFA
mean

mean first autocor-
relation function

0.02 0.848 0.730

Table 5: Significant acoustic features (p < 0.05) for SD vs.
PNFA.

5.2. Recognizing PPA speech

Table 6 shows the WER of the Nuance system across pop-
ulations and vocabularies. Somewhat surprisingly, using the
reduced vocabulary reduces accuracy considerably, despite all
words in the test set being present in the vocabulary. A possi-
ble explanation may be found in the distribution of error types
across the uses of both vocabularies, which is shown in ta-
ble 7. In particular, when using the reduced vocabulary, Nu-
ance makes significantly more deletion errors, which may be
attributed to a lower confidence assigned to its word sequence
hypotheses which in turn may be attributed to a language model
that is not adapted to non-default vocabularies. A general lan-
guage model may assign a high lexical probability to a series
of words that are phonemically similar to an utterance but if
those words are not in the reduced vocabulary, a more domain-
specific sequence of words may be assigned a low lexical prob-
ability and therefore a low confidence. When confidence in a
hypothesis is below some threshold, that hypothesis may not be
returned, resulting in an increase in deletion errors. Not having
access to these internals of the Nuance engine prohibits modifi-
cation at this level.

Another point to highlight is that, given Nuance’s de-
fault vocabulary, there is no significant difference between the
WER obtained with the control and PNFA groups (t(26.78) =
−0.62, p = 0.54, CI = [−0.16, 0.08]), nor with the con-

Default Vocabulary Reduced Vocabulary
SD 73.1 98.1
PNFA 67.7 97.3
Control 64.0 97.1
All 67.5 97.5

Table 6: Mean word error rates for the Nuance systems on each
of the participant groups.
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(a) PPA vs. control, 0.2 IE, 0.2 SE, 0.6 DE (b) PPA vs. control, 0.2 IE, 0.6 SE, 0.2 DE (c) PPA vs. control, 0.6 IE, 0.2 SE, 0.2 DE

(d) SD vs. PNFA, 0.2 IE, 0.2 SE, 0.6 DE (e) SD vs. PNFA, 0.2 IE, 0.6 SE, 0.2 DE (f) SD vs. PNFA, 0.6 IE, 0.2 SE, 0.2 DE

Figure 1: Acoustic features (filled bars) and text features (empty bars) selected for the feature sets at each WER for each distribution
of insertion errors (IE), substitution errors (SE), and deletion errors (DE). Each bar represents one standard deviation from the mean,
and the lines indicate the minimum and maximum values.

Default
Vocabulary

Reduced
Vocabulary

Insertion errors 0.00602 0.00008
Substitution errors 0.39999 0.11186
Deletion errors 0.59398 0.88804

Table 7: Distribution of error types for the Nuance systems.

trol and SD groups (t(23.77) = −1.47, p = 0.16, CI =
[−0.22, 0.04]), although the differences in Table 7 might seem
large.

5.3. Diagnosing PPA and its subtypes

We evaluate the accuracy of diagnosing PPA and its subtypes
based on the selected features across the three classification
methods using the simulated ASR method. In practice, clas-
sification models might be trained on data that have been man-
ually transcribed by humans (clinicians or otherwise). How-
ever, as the amount of data increases, this becomes less prac-
tical and it may become necessary to train these models from
transcripts that were automatically generated from ASR. We
replicate our experiments once on data that have been man-
ually transcribed and once on the same data, but with tran-
scripts corrupted by synthetic word errors (in which case the
training data and test data have the same WER). Classifiers
trained on human-produced transcripts have an average accu-
racy of 65.71% (σ = 12.42) and those trained on ‘noisy’
transcripts have an average accuracy of 70.72% (σ = 13.89),
which is significant at heteroscedastic t(543) = −4.47, p <
0.00001, CI = [−0.072,−0.028]. These differences can be
observed in Figure 2. Interestingly, the classifiers trained with

‘noisy’ transcripts outperform those trained with ‘clean’ tran-
scripts fairly consistently in the PPA vs. control task, but this
is far less pronounced (and to some extent reversed) in the SD
vs. PNFA task. This may be partially explained by a significant
three-way interaction between WER, the task (i.e., the partici-
pant groups), and the training set (i.e., ‘noisy’ vs. ‘clean’) on a
followup ANOVA (F (6) = 2.43, p < 0.05).

This trend is also apparent when the classifiers are tested
using the Nuance transcripts. Figure 3 shows the classifica-
tion accuracies for each classifier on each diagnostic task using
the data generated using the default and reduced vocabularies.
When classifiying PPA versus controls, training on the ‘noisy’
Nuance data always leads to equal or greater accuracies than
training on the ‘clean’ (human-transcribed) data. For SD ver-
sus PNFA, the results are mixed, although the results from the
reduced vocabulary suggest the opposite trend.

We compare the diagnostic accuracies across all classi-
fiers given transcripts from Nuance using the reduced vocab-
ulary with the accuracies of the synthetic WER method using
the nearest WER (100%) and the associated error type dis-
tribution (i.e., 10% substitutions, 90% deletions, over all er-
rors). We find no difference between results obtained with
Nuance data and those obtained with the synthetic method
(t(44.25) = 1.1072, p = 0.27, CI = [−0.04, 0.13]). We
repeat this analysis with the default Nuance vocabulary and
its equivalent synthetic WER (70%) and distribution (i.e., 40%
substitution, 60% deletion) and again find no significant differ-
ence (t(44.61) = 1.46, p = 0.15, CI = [−0.02, 0.11]). Here,
distributions of WER are approximately Gaussian over the var-
ious parameterizations of the systems. The lack of apparent
difference in diagnosis when using the Nuance ASR and the
synthetic method supports the use of the latter in these experi-
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(a) PPA vs. control (text) (b) PPA vs. control (text & acoustic)

(c) SD vs. PNFA (text) (d) SD vs. PNFA (text & acoustic)

Figure 2: Accuracy in diagnosing the indicated classes given features derived from potentially error-full textual transcriptions alone
and in combination with features derived directly from the acoustics. Lines marked with x’s, circles, and pluses indicate the use of the
naı̈ve Bayes, random forest, and support vector machine classifiers. Solid lines indicate those trained with human-transcribed (clean)
data and dashed lines indicate those trained with corrupted data.

ments.
Among the simulated ASR data, an n-ary ANOVA reveals

significant main effects for each of the classification problems
(PPA-vs.-control or PNFA-vs.-SD; F (1) = 124.19, p = 0),
WER (F (5) = 31.69, p = 0), error distribution (proportions
of IE, SE, and DE; F (4) = 6.32, p < 0.0005), and training
set (‘noisy’ or ‘clean’; F (1) = 35.41, p = 0) on the accu-
racy of classification; there is no effect of the classifier, however
(F (2) = 2.27, p = 0.1039). There were significant interaction
effects between WER and the classification problem (F (5) =
5.18, p < 0.0005), error distribution (F (12) = 2.2, p < 0.05),
and the training set (F (5) = 4.95, p < 0.0005), but not with
the data subset (text or text with acoustics; F (5) = 1.42, p =
0.2146), or the classifier (F (10) = 0.49, p = 0.8993).

6. Discussion
Our goal is to provide assistive technologies, including diag-
nostic software, to various populations with pathological speech
and language, including those with PPA. This study represents
an initial step towards ASR for this population. One main result
of this research is that fairly accurate diagnosis of PPA and of
its subtypes can remain relatively accurate, even at very high
levels of WER, by selecting appropriate features from the data
at training time. Acoustic features are valuable, as they remain
constant as the WER increases. However, our data suggest that
some features from the text can still be informative, even when
the transcripts are very noisy.

One important direction for future work is to improve ASR
for clinical populations. Clearly, modern speech recognition has

greater difficulty in recognizing PPA speech relative to speech
the general elderly population, especially for individuals with
SD. While more appropriate acoustic models built for older-
adult voices will be important (based on available data), a focus
on improving language modeling and the pruning of the lattices
produced by hidden Markov models may be more fruitful if the
cause of the pathology is semantic or lexical.

Another limitation of our approach is that the t-test method
for feature selection does not consider interactions between fea-
tures. In the future we would like to examine these interactions,
particularly between text and acoustic features.

In this study we did not take into account any syntactic fea-
tures, although agrammatism and/or syntactic simplification are
characteristic of PNFA. Presumably, including information of
this type could increase the classification accuracy. One ap-
proach would be to apply a sentence boundary detection al-
gorithm to the ASR transcripts and extract traditional syntac-
tic complexity measures (e.g. Yngve depth). Another approach
would be to explore localized complexity metrics which do not
depend on full sentence parses.
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Abstract 
Although automatic speech recognition (ASR) has been used in 
several systems that support speech training for children, this 
particular design domain poses on-going challenges: an input 
domain of non-standard speech and a user population for which 
meaningful, consistent, and well designed automatically-derived 
feedback is imperative.  In this design analysis, we focus on and 
analyze the differences between the tasks of speech recognition 
and speech assessment, and identify the latter as a central issue 
for work in the speech-training domain. Our analysis is based on 
empirical results from fieldwork with Speech-Language 
Pathologists concerning the design requirements analysis for 
tangible toys intended for speech intervention with primary-
school aged children.  This analysis leads us to advocate for the 
use of only rudimentary ASR feedback. 
Index Terms: speech intervention, automatic speech recognition  

1. Introduction 
In the context of control systems, automatic speech recognition 
(ASR) refers to a series of techniques combining signal 
processing, statistical modeling, and machine learning to 
interpret human speech typically by deciphering input acoustic 
signals into phones or other linguistic elements such as syllables, 
words or phrases [1].  Speech, as a mode of input, has been taken 
up in many ASR-based applications in the disability community, 
such as for speech-to-text communication technologies and for 
command interpretation systems for hands-free computer use [2]. 
However, there are key differences between these speech-based 
control systems and those system for speech training. 

Speech training for children, as conducted in face-to-face 
sessions led by a speech language pathologist (SLP), involves 
eliciting speech that includes the problematic segment that has 
been targeted for intervention. The child is provided with 
corrective feedback (best practices from clinicians adopt a 
feedback approach at word-level or even coarser granularity).  
The SLP draws upon a repertoire of techniques for speech 
elicitation and feedback.   

The potential of ASR to support computer-based tools to 
improve the efficacy of the traditional face-to-face clinician-
client dyad and the potential to provide new modes of 
intervention, outside of face-to-face sessions with an SLP has 
been recognized previously [3]. Despite the recognized benefits, 
relatively few computer intervention systems that incorporate 
ASR have been developed and thoroughly evaluated. A 
recognized obstacle for the use of ASR in speech intervention 
systems has been that this technology oftentimes does not 
perform well for non-standard pronunciations and can lead to 
inconsistent feedback [4]. Other systems focus on the use of 

multimedia instructions (i.e., animation and audio) to aid parents 
and SLPs communicate feedback to children in the course of 
speech exercises, but do not use ASR (e.g., [5]). In our design 
analysis, we discuss these systems with a view to clarify and 
reposition the design objective for this particular design domain. 

Many language learning and practice applications have been 
developed in recent years for smartphones and tablets [6]. Many 
of these applications are digital versions of flashcards and 
pictures to help SLPs in intervention (e.g., Phonics Studio). A 
few of these applications record speech and provide data 
gathering (e.g., Articulate It!). The potential benefits of these 
applications for speech training and intervention are clear, and 
the field looks forward to systematic usability and efficacy 
evaluation.   

Our design analysis focuses on the theoretically oriented 
question of what is the feasibility of automatic corrective speech 
feedback for children? Having clear answers to this and other 
foundational questions are prerequisites for good applications. 
We provide a literature review of previous computer speech 
intervention systems that incorporate ASR, with view of 
identifying challenges and techniques to address them. A goal is 
to contribute toward the design of new-generation speech 
intervention system and to yield novel insights. To this end, we 
have conducted fieldwork with five clinic-based SLPs who work 
with pediatric populations, with a particular focus on the designs 
of tangible toys intended for use as part of and in support of 
speech intervention protocols.  

2. Analysis  

2.1. Challenges in Repurposing 

Prior speech intervention systems have either incorporated extant 
ASR engines or have developed specific ASR engines for their 
projects (such as [7] and [8]).  Reuse, in general, is often a good 
strategy, since it has the advantage of repurposing a large amount 
of work and effort gone into the original design of the ASR. 
However, this reuse has introduced a number of issues.  The first 
issue concerns the nature of the ASR output. Speech intervention 
systems require the analysis of input speech that is relative to a 
given target. The required output needs to provide useful 
information about the differences between the elicited and the 
targeted speech unit, which is necessary in order to provide 
corrective feedback. Traditional conceptions of ASR systems 
provision for the identification of words within speech, where 
the content of that input speech is not known a priori.  The 
recognition result from the ASR module is provided in the form 
of a lexicographical interpretation for some particular input 
acoustic signal.  Thus, one can recognize a misalignment 
between what ASR module provides and the design 
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requirements. A key challenge in this design domain is the 
alignment and extraction of information that will be useful for 
corrective feedback, whereas a main challenge for ASR (more 
generally) is identification in the face of deviation from the 
training pronunciation.  

Extant, general ASR modules (e.g., Dragon Naturally 
Speaking [9]) are mostly developed for speakers with clear 
speech. These modules are derived from human speech samples 
and are trained on clear “standard” speech. When the input 
speech differs from the modeled speech, due to reasons such as 
when the input speech is produced by a speaker with an accent or 
speech impairment, the performance of the ASR module 
degrades [2, 10]. The performance further degrades when speech 
is affected by environmental noise, distortion and sound quality 
change [11].  

An error, in this context, can be understood as either a 
recognition error, where input is “correct” but the system fails to 
recognize it, or a speech error, where input speech significantly 
deviates from a standard model. Despite rapid improvements in 
ASR technology, some researchers believe that because sound 
and specifically speech is a noisy input channel, errors are an 
inevitable part of ASR technologies [1]. In the presence of non-
standard speech, ASR modules produce low confidence scores 
for predicted candidates, reflecting the high possibility of 
recognition errors.  In response, several research initiatives have 
focused on ASR specifically for dysarthric speech (e.g., [12, 13]) 
and/or the speech of children (e.g., [14]). 

2.2. Prototype Systems    

Kewley-Port et al.’s early system was developed using recorded 
templates of the child’s best production, which were then used as 
standards against which to measure the acceptability of new 
utterances [15]. The researchers conjectured that recognition 
error rates as high as 20%, a rate within the capabilities of a 
small vocabulary speaker-dependent system, would be 
acceptable for articulation training.  A more detailed assessment 
of the degree of success of the system was not provided.  
Adoption of this approach has been limited, however: training is 
required for each individual, and target words and phrases that 
consist of segments not producible by the child are not possible 
(thereby obviating application for speech intervention).  

Speech intervention mediated by the Speech Training, 
Assessment, and Remediation (STAR) system, a system designed 
to distinguish between the segments /r/ and /w/, was achieved 
through a role-playing game with the premise that “aliens” need 
to understand the child’s speech [16]. Evaluation was conducted 
in which likelihood ratios, as calculated automatically by the 
ASR module, were compared with perceptual quality ratings, as 
provided by human judges. The results showed high correlation 
between the two measures for substitution errors. In other words, 
the system worked well when /r/ and /w/ were misarticulated. 
However, the ASR module produced many false positives (i.e., 
the results correlated poorly for correctly articulated examples). 

2.3. Box of Tricks 

Vicsi et al. developed a speech intervention system, Box of 
Tricks, for children with hearing impairment [8]. Box of Tricks 
uses ASR to detect and to provide feedback about speech 
mistakes and was originally devised to support Hungarian, and 
has subsequently been expanded to also support English, 

Swedish and Slovenian. Box of Tricks is designed to train for 
vowels and also fricatives. 

The goal of Box of Tricks is to teach children to modify their 
speech on the basis of visualizations of their speech signals. 
Picture-like images of energy, change in time, fundamental 
frequency, voiced or unvoiced detection, intonation, spectrum, 
spectrogram (cochleogram) and spectrogram differences were 
used for the visualization.  

 

 
Figure 1: Feedback from two systems designed for 
children: Box of Tricks (left) [8] and ARTUR (right) [7] 

For the visualizations, a filter was developed and applied that 
produces a representation based on inner ear processing rather 
than FFT spectra. The researchers hypothesized that the 
visualization generated by this filter would be a more intuitive 
representation of speech for their users than other types of 
visualizations. The representation of elicited pronunciation was 
shown in alignment with a representation of a target 
pronunciation. Parts of the representation were highlighted to 
signal more important features of the speech: to draw the 
children’s attention to these parts that were highlighted by 
amusing background pictures. These visualizations, especially 
combined with gaming elements, would be more stimulating 
than numerical scores. 

Box of Tricks did not provide overt instruction to the children 
about how to correct their speech, however. Although the users 
were provided with feedback that indicated, in some fashion, the 
differences between their input speech and the desired, target 
speech, they were not provided with clear instruction for how 
this difference might be decreased.  The researchers conjectured 
that this approach provides meaningful feedback to children and 
allows them to use the system by themselves.  It was not clearly 
demonstrated that, in the absence of such corrective feedback, 
the children were able to incorporate the information into their 
motor learning, but neither was the conjecture disproved. 

2.4. ARTUR 

Bälter et al. developed a prototype of a computer system for 
speech intervention for children with hearing impairments to be 
used in the absence of SLPs [7]. The system aims to identify 
problematic pronunciations and provide corrective feedback. A 
computer-animated head with exposed internal parts of the face 
and mouth, referred to as the Articulation TUtoR (ARTUR), was 
constructed. ARTUR was utilized to provide feedback based on 
the input (albeit not synchronously with the elicitation). The 
researchers hypothesized that, for children with hearing 
problems, the visualization of the movement of vocal tract is 
more useful than acoustic signal visualization. A knowledge base 
of mappings was constructed: for each possible error, an 
appropriate corrective response was developed (some corrective 
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responses were reused). The feedback, in the form of spoken 
commands and corresponding animation, was drawn from this 
knowledge base. The researchers conjectured that showing the 
hidden parts of vocal tract would be key to effective speech 
intervention. In the final implementation of the system, audio 
input is to be supplemented with video footage of the user for 
more accurate categorization of pronunciation error.  

The system was tested with two groups of children in a 
Wizard-of-Oz study. The children in the first group were six 
years old and the ones in the second group were between nine 
and eleven years old. In addition to children, an adult with 
English as second language also used the program and provided 
feedback. 

The empirical qualitative data demonstrated that the children, 
especially the older group, liked the idea of playing with a 
computer and being given explicit feedback. However, while 
they (and especially the older group) liked the program in 
general, they found the visual feedback confusing and unhelpful. 
This was found of both the image representation of speech 
organs and the accompanying animation. The children suggested 
that adding more game-like features, such as goals and rewards, 
to make it more engaging. Also, they found the user interface of 
the program, as well as the anatomy of the vocal tract (e.g. the 
hard palate), unclear. When compared to interaction with the 
SLP, older children described the interaction as more relaxed.  In 
more recent work, ARTUR’s interface was assessed for use in 
second language pronunciation training for adults and children 
[17].  

In a study of the pedagogy of feedback conducted to inform 
an application of the system for second language training, 
Engwall and Bälter demonstrated that, even given the availability 
of accurate information for feedback, many interaction decisions 
such as when and how to deliver feedback need to be built into 
the design of a given application [17, 18]. The study was done in 
the context of second language learning but the results are still 
relevant to pronunciation training. 

2.5. Speech Viewer II 

A commercial (but no longer in distribution) speech therapy 
system, Speech Viewer II, was developed to help adults with 
speech impairments improve their speech [19]. This system 
visualized speech signals and waveforms. Figure 2 shows speech 
visualization produced by this system. 
 

                         

Figure 2: Speech Viewer II uses wave diagrams as 
feedback [18]. 

Two studies have shown that this system does not work well 
for use by children with hearing impairments. The first study 
showed that the program did not have any advantages over 
traditional speech therapy for vowel training for children with 
profound hearing impairments [20]. The second study tested a 

vowel accuracy feedback with children with hearing impairments 
and showed that the system produced modest gains but exhibited 
inaccuracies and inconsistencies in feedback [21].  

When the use of Speech Viewer was restricted to the 
improvement of prosodic features of speech for children with 
hearing impairments, better results were produced. Öster 
conducted a study with two deaf children who were trained using 
the program for ten minutes twice weekly over an eight week 
period [22]. For each child, a different skill was targeted: a 
fifteen-year-old boy who had difficulty with producing 
durational contrast between phonologically long and short 
vowels, and a thirteen-year-old girl who had difficulties 
producing voicing contrasts between voiced and voiceless velar 
stops. Both children were reported to have improvements in the 
areas targeted. Öster also conducted a study with a five-year-old 
deaf boy who had difficulty controlling the loudness and pitch of 
his speech [19]. While detailed information about the amount of 
training, methodology and the results of the intervention is not 
provided, the researcher reported that use of the program, and 
specifically its graphical interface, allowed the SLP to 
communicate better with the child, resulting in improved 
loudness and pitch. 

2.6. OPTACIA 

Öster et al. have conducted initial experiments with the 
OPTACIA system, which is similar to Speech Viewer, and 
produces visual maps for training Swedish sibilant fricatives, 
fricatives with higher-frequency and acoustic energy than non-
sibilant fricatives, to hearing-impaired users [23]. The system is 
designed to supplement speech intervention. The user is provided 
with a visual representation of his or her speech that is shown in 
relation to a visualization of a target pronunciation. The 
researchers hypothesize that having this feedback will help 
increase the frequency of correct pronunciations. In this system, 
the produced diagrams will be described by the SLP and used as 
a tool during therapy to visualize specific components of speech.  

The speech of three severely hearing-impaired children when 
pronouncing the fricatives was recorded and mapped against the 
created maps and it was found that the visualizations 
corresponded well with the speech produced.  

While this system shows it is possible to create visualizations 
that correspond with non-standard input speech, it did not 
discuss the usefulness of this approach for children. The input 
data was restricted to sibilant-vowel combinations rather than 
words, and the visualizations were shown in terms of time and 
frequency, an unintuitive approach for children. The project was 
in its initial phase and no user studies were conducted.   

2.7. visiBabble and VocSyl 

The visiBabble system, manifested either as a tangible toy or as a 
software application, processes infant vocalizations in real-time 
and produces brightly colored animations, intended to provide 
positive reinforcement of the production of syllabic utterances, 
intended as an early speech intervention and support for later 
language and cognitive development [24, 25].     

In a similar vein, the VocSyl system also used speech and 
vocalization analysis and visualization to engage children’s 
speech [26, 27, 28] using a software application. VocSyl uses a 
suite of audio visualizations to represent different audio features 
of speech (pitch, loudness, duration and syllables) in abstract 
visual representations that are presented to children in real-time.  
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visiBabble and VocSyl are intended to encourage children 
with speech delays.  VocSyl was originally designed for 
motivating children with Autism Spectrum Disorder (ASD) to 
encourage speech vocalizations [28]. An initial study of VocSyl 
with 5 children with ASD showed that audio and visual 
stimulation increase the rate and duration of speech like 
vocalizations. Hailpern et al. found that each of the children 
responded to at least one form of feedback and that only some 
participants responded to visual stimuli whereas others 
responded to auditory stimuli or a combination of visual and 
auditory stimuli. They also found that it is likely that 
visualizations should be customized to some extent for each 
person [28]. 

  

 
Figure 3: VocSyl visualizations to illustrate multisyllable 
words [27] 

A more recent application of the VocSyl system supports the 
production of multi-syllabic speech production in children with 
autism speech apraxia and speech delays. One of the goals is to 
provide children with a persistent visual representation of their 
speech that would facilitate reflection and a new experience of 
language skills. The goal is to use visualizations to illustrate 
differences in utterances and help with the ability to combine 
syllables both as word combinations and in single multisyllabic 
words [26, 27].  

Figure 3 shows the interface of VocSyl. Syllables are 
represented by discreet elements (left screenshot) or regions in 
continuous visualizations (rights screenshot) and emphasis, pitch 
change and pacing are represented by the diameter of the 
graphical element and position on the y-axis and x-axis, 
respectively. The researchers involved two children with ASD, 
two children with SPD and four children without disabilities in 
the design of the system.    

While the system does not currently provide corrective 
feedback, it focuses on engagement and motivation and, also, 
provides the visualizations as a communication aid to help SLPs 
demonstrate specific aspects (i.e., syllable location and volume) 
of the vocalizations. It is apparent that if corrective feedback 
were given in the absence of SLPs or parents to facilitate their 
interpretation, the children would not have been as motivated to 
continue using their speech.  

2.8. Field Interviews  

Like Fell et al. [24, 25], we are also interested in the 
development of tangible interactive toys for the support of 
speech intervention [29]. To this end, we conducted open-ended 
interviews with five SLPs who work with children (our target 
user population is ages 4-7).  We reached these SLPs by direct 
contact.  

All the interviewed SLPs felt that a toy that focuses on 
speech elicitation would be useful. Three of the SLPs already use 

props such as dolls and physical toys, as well as, images and 
flash cards to engage children. These toys allow for the 
development of narrative and the engagement of the children’s 
attention. They stressed that it is useful to have toys that when 
working with small children (ages 4-7) can be touched and 
grasped and are also durable.   

Two of the SLPs who were interviewed used iPads to play 
games that involve speech. Surprisingly, they preferred games 
that encourage speech through stories and play but are not 
specifically developed for speech intervention and have simple 
interfaces, (e.g., My PlayHome). One SLP commented that she 
prefers to use non-computational material during intervention 
because too much technology can be distracting for the children.  

It was noted that, sometimes, initial engagement of children 
is difficult and it takes a long time to establish a relationship with 
them to the point where they start using their speech more freely. 
It was also noted that capturing the child’s natural speech (i.e., 
speech spoken in the absence of the SLP) would be helpful in 
assessing intervention needs. One SLP records samples of her 
client’s speech during some of her sessions. She uses these 
samples for future comparison of intervention outcomes, analysis 
of speech in the absence of the client.  

All SLPs indicated that having no or little feedback that is 
consistent and accurate is better than inconsistent or incorrect 
feedback, especially in the absence of the SLP who can mediate 
between the technology and the child. However, they mentioned 
that some measure of progress is necessary so that not all speech 
is rewarded equally. Additionally, the SLPs suggested that 
automatic tracking and record keeping of exercises are useful 
functions that a computational toy could provide. 

Three of the interviewed SLPs discussed the context of 
multilingual communities. Working with children who are 
multilingual is quite common in Toronto, and in Canada more 
generally, due to the presence of many new immigrants. These 
SLPs noted that many immigrant children whose first language 
is not English face difficulties when moving to a new country 
where English is the main language and noted this condition as a 
contributor to speech delays. The issue is complex, as the home 
language is often not English, the parents and caregivers are not 
fluent and are not in a position to assist with speech exercises at 
home. Additionally, as the children grow up, they are faced with 
the challenge of switching between English and their home 
language.  These challenges can place stress on interfamily 
relations and cause disconnect between children and their 
parents. These SLPs highlighted the particular need for a toy that 
is able to switch between languages and that supports 
communication between children and parents in languages other 
than English. School board policies oftentimes specifically 
encourage parents to speak and read with their children in the 
home language, as a support for language development.  

3. Discussion 

3.1. The challenges of feedback  

As indicated previously and reinforced by our SLP interviews, 
the provision of meaningful and consistent feedback to children 
is a key priority.  The feedback must not only be evaluative (i.e., 
indicating whether a given speech target was reached or not), but 
must also provide corrective analytic feedback (i.e., analyze and 
semantically interpret degrees of deviation between elicited 
speech and a given speech target). Analyses even from a decade 
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ago identified that ASR technology is not able to provide 
corrective analytic feedback and can only provide evaluative 
feedback [30]. 

For an ASR module operating in a speech intervention 
context, if it is unable to produce a lexicographic candidate for a 
given speech input, then the system must decide whether this 
error is an instance of speech error due to poor speech or a 
recognition error due to poor system performance. In this 
situation, the system may exploit additional information in the 
form of information about the expected input. 

Researchers have determined that systems, such as those 
reviewed in prior sections, which rely on abstract visualizations 
as feedback do not seem to work well for children. Neri et al. 
have identified a major problem with providing comparable 
waveforms, a popular form of feedback (e.g., Speech Viewer II), 
to the user [31]. Although showing target and input waveforms 
in alignment can be motivating for the user (i.e., to try to emulate 
the target waveform by modifying their pronunciation), it does 
not necessarily lead to behavior modification (i.e., correction of 
articulation).  Moreover, Neri et al. argue that such alignments 
may be misleading, since it is possible for two articulations to 
both be “on target” and yet have waveforms that are very 
different from each other; they argue that even a trained 
phonetician cannot extract information needed to correct 
pronunciation from this feedback, let alone a user who does not 
have any training in interpreting this form of feedback [31]. 

3.2. Shifting from analysis to elicitation motivation 

Although ASR is challenged by certain requirements of this 
design domain (namely the need for corrective analytic 
feedback), it supports admirably well another requirement: that 
the system be engaging, interactive and motivates repeated 
speech productions by the child. A key observation here is that 
incorporating ASR can make the computer system responsive to 
speech even if it does not provide detailed feedback. In the 
context of speech intervention, even rudimentary feedback can 
be of value, since it can motivate children to try multiple 
repetitions of words and phrases.  This approach has been used 
in a remarkable study by Mitra et al., in the context of accent 
reduction, which found that even rudimentary feedback was 
helpful [32].  

In this study, sixteen children between the ages of twelve and 
sixteen were chosen from an Indian English median school, 
where English was the primary medium of teaching but was 
spoken with a strong accent. They were grouped into four groups 
and given access to a computer for three hours a week. The 
children were provided with “Ellis”, an English language 
learning program with no ASR support, four classic English-
language films that they could choose to watch during their time 
at the computer and the previously mentioned Dragon Naturally 
Speaking program. The children were given the objective of 
making their speech understood by the Dragon Naturally 
Speaking program that either accepted or rejected input speech 
and did not provide corrective feedback. No further instructions 
were provided following an initial demonstration of the 
resources.  Rather surprisingly, the approach was effective. To 
measure improvements in speech and whether they carry to real-
life situations, four human judges were provided with video clips 
of children speaking at different evaluation points. A measure of 
the percentage of words correctly recognized was calculated. 
Significant improvements over a five-month period were 
observed. Furthermore, the word recognition rates by the ASR 

module were correlated with the human judges’ assessments of 
pronunciation accuracy (e.g., an improvement of 117% was 
observed, as assessed by the human judges and of 79%, as 
assessed to the ASR module). 

In another study of second language training, class 
observations and teacher interviews, revealed that in practice 
very little feedback is given to the students [17]. Reasons for 
limiting feedback were to maintain a positive atmosphere and 
communicative flow. A study of literature on the pedagogy of 
feedback shows that according to many theories (e.g., [33]), the 
encouragement of speech and communication is as important as 
its correction.  

Scientific researchers in this domain may quickly conclude 
that the need for high-quality corrective analytic feedback clearly 
motivates the need for further work into automated speech 
analysis.  And such work is ongoing.  For instance, efforts in the 
area of acoustic training, which entails to the process of 
recording representative speech samples from a user to create or 
to augment an acoustic database [2]. In particular, Rudzicz has 
recently developed and validated a highly specialized ASR 
module for dysarthric speech [12].  Another project, the 
Universal Access (UA) dysarthria speech database has gathered a 
collection of speech samples from individuals with speech 
dysarthria that can be used to incorporate knowledge about 
dysarthric speech into an ASR application [13]. The other 
approach from the Assistive Technology domain to increase 
effectiveness of ASR for users with non-standard speech, input 
restriction, may also been seen as providing a useful avenue for 
speech intervention, since the approach relies on simplifying the 
recognition task by restricting the input to a limited number of 
isolated words, rather than continuous speech. This approach has 
been used widely, and improves accuracy rates (e.g., Rosengren 
et al. showed that adapting the vocabulary for each user 
improved accuracy rates from 28% to 62% [34]), and has been 
employed in some of the previously described systems (e.g., [19, 
23]).  

But in a parallel stream to the specific ASR research and 
development work underway, one may consider the broader 
design parameters of the application domain: a designer may see 
this situation not so much as an obstacle, but rather an occasion 
or opportunity to contemplate more generally the role of ASR in 
speech intervention systems, systems which are needed for the 
here and now, for deployment on a time-scale that is not hinged 
to the outcomes of medium- and long-term automated speech 
analysis research projects, and for contexts in which an SLP is 
already present and mediating the speech intervention session 
(who is trained and experienced with the design of corrective 
feedback). 

Although it would seem unintuitive, we conjecture that 
rudimentary feedback provides more value than other more 
detailed types of corrective feedback. Rudimentary feedback 
preserves a main point of “value” of ASR, which is as the main 
driver for motivating, interactive technology-mediated 
experiences.  These encounters motivate the elicitation of 
multiple and repeated speech productions over a sustained period 
of days or weeks.  Engwall et al. [17, 18] correctly identified the 
need for nuanced and carefully designed strategies to deliver 
corrective feedback.  We argue that the same care and attention 
is needed for the motivation strategy for eliciting productions.  
And though these two aspects are clearly intertwined, we are 
currently pursuing “low-tech” strategies in which there is a 
radical rethinking of the role of ASR in a speech intervention 
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system.  We recognize the limitation of ASR to analyze non-
standard speech and instead use it to facilitate and motivate the 
use of speech as an input mode. The task of providing detailed 
feedback can be left to the SLP (the “human agent”) and the use 
of ASR, and the computational media more generally, can be 
recruited for user engagement, motivation and the elicitation of 
speech productions.    

A point that needs mention is that the findings discussed here 
is based on an assumption about the lexical unit being short and 
the language having a relative low ratio of morphemes to words 
(e.g., as in English); we expect the results to generalize to other 
moderately analytic languages, but may not generalize more 
broadly, for example to synthetic languages (e.g., Greek). 

4. Conclusion  
In this paper, we have reviewed a number of systems that 
employ ASR for speech or pre-speech intervention.  We discuss 
how ASR technology as of present often provides unreliable and 
approximate feedback in the presence of ambiguous or erroneous 
speech, which results in unintuitive and inconsistent feedback 
that can be confusing and ineffective to users.  

Extant intervention systems that use ASR face the main 
challenge of designing effective feedback. There remains a 
misalignment between the original design goal of ASR modules 
(i.e., recognition of speech) and their repurposed role in 
computer speech intervention systems (i.e., analysis and 
assessment of speech). Research demonstrates that abstract 
representations such as waveforms and closeness scores are 
unintuitive for children and have not been helpful in correcting 
speech.  Our fieldwork shows that SLPs themselves highly value 
ASR and computational media more generally for its effect in 
motivating users and eliciting repeated speech productions. 

While input restriction, a method used previously in systems 
developed for users with dysarthric speech and strong accents 
can be employed to improve the performance of ASR modules, 
based on reported interview results with SLPs and the literature 
review, a more radical shift in the role of the ASR module is 
suggested. This method involves using ASR to engage rather 
than evaluate speech, given the goal of facilitating sustained 
practice through the elicitation of multiple repetitions of target 
words and phrases. As demonstrated by Mitra et al., it can be 
effective to subordinate the accuracy of ASR to its use as a 
facilitator and “encourager” of interaction [32].  
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Abstract 

We present a customized speech-activated email system that is 
the product of efforts focused on a single target user with high 
speech recognition error rates. The system, which includes off-
the-shelf and custom hardware and software, allows the user to 
use speech to send emails with recorded audio attachments. 
Over the past 16 months, our target user has sent and received 
hundreds of emails and has integrated the system into his daily 
life.  Key factors contributing to the long-term adoption of the 
device include our extended efforts to understand the target 
user over multiple years, iterative design, and the collaboration 
of our multidisciplinary team of assistive technology (AT) 
designers, clinicians, software developers, and researchers. 
Overall, we ask: if we set our sights on developing and 
supporting a technology that someone will actually use daily, 
what can we learn? We share our approach, system design, 
user observation and findings, with implications for speech-
based AT research and development. 
Index Terms: speech interfaces, usability, assistive 
technology 

1. Introduction 
Functional access to computers and other devices can help 
people with physical impairments stay connected with others, 
access information, or control the environment. For many 
individuals who cannot use touch-based interfaces like 
keyboards and mice, automatic speech recognition (ASR) 
could be a viable alternative access method. However, ASR 
systems can be challenging to use for individuals who have 
speech difficulties, since such systems are typically not trained 
on, or designed to be used by, people in these relatively small 
populations. These technical challenges mean that ASR-based 
assistive technology (AT) often falls short of its potential as an 
access equalizer for people with disabilities [Young2010]. 

The present paper describes a system that has enabled a 
single individual, an adult wheelchair user with advanced 
secondary progressive multiple sclerosis (SPMS), to send 
emails without assistance on a regular basis. We offer details 
on the multi-year process required to design and implement 
speech-based email system that has made a positive impact in 
his daily life. Where commercial off-the-shelf components 
existed and were appropriate, we tried and incorporated them. 
Our work has involved rehabilitation technology staff, 
clinicians, family members, and researchers who worked to 
understand his context, needs, and preferences in order to 
develop an appropriate, long-lasting AT intervention. 

Our approach differs from most academic research on 
speech recognition for individuals with disabilities, which 
often prioritizes novel algorithms, new models, or superiority 
over baselines in short-term user studies. While we certainly 
do not dismiss these contributions – we follow these research 
paradigms most of the time ourselves – our deviation is 

deliberate. Specifically, in this work, we ask: What is required 
to actually deploy speech-based assistive technology and have 
tangible impact on a user’s life? What can we learn from this 
implementation process?  

This paper goes beyond describing an end product – we 
also discuss the target user’s context and our design process. 
We introduce the target user (Section 2) and his past AT usage 
(Section 3), then describe the speech-based email system 
(Section 4). We provide details on how staff and clinicians, 
family and friends, students in a design-based assistive 
technology course, researchers, and, most importantly, our 
target user himself were involved in identifying the 
shortcomings and utility of various AT interventions. Section 
5 discusses our findings: our target user’s actual email usage 
over a 16-month period. We discuss our insights and their 
implications for researchers and practitioners in Section 6.  

2. User and design constraints 
Our work occurred at The Boston Home (TBH), a residence 
and center for care for adults with multiple sclerosis and other 
progressive neurological conditions. The 96 residents at TBH 
receive nursing, medical, physical therapy, speech-language 
pathology, and assistive technology services on site, in 
addition to an array of social, artistic, and residential activities.  

2.1. Description of target user 

Our target user is a middle-aged male living with 
advanced SPMS. He is a power wheelchair user, has minimal 
control of his arms and no active movement in his legs due to 
spastic quadriplegia, and vision challenges due to SPMS-
associated optic neuritis. Meanwhile, he has high cognitive 
function, good working memory, and generally an eagerness 
to try new AT.  

Given these limitations, ASR could be a promising access 
channel. However, our target user’s speech is not recognized 
accurately by existing, large-vocabulary speech recognizers. 
Challenges include abnormally strained vocal quality, reduced 
respiratory support for duration and intensity of phonation, 
variable pitch control (vocal fry) over the course of a single 
utterance, and dialectical variation from standard American 
English, which he acquired as a second language in adulthood. 
Our target user’s successes and difficulties of using ASR-
based AT is discussed in Section 3. 

2.2. Goal: Computer and email access 

Our target user seeks greater independence. Any device that 
allows him to rely less on other individuals can have a positive 
impact. Our current goal is to enable independent (and thus 
private) computer access, particularly to email, which would 
help him better stay in touch with friends and family. 

Our close interaction with our target user allowed us to 
define some key characteristics of our eventual system. The 
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need for system training by the user and adjustment by outside 
experts should be minimized, even though his abilities can 
fluctuate over time. Meanwhile, the appearance and user 
interface of any solution is very important, particularly those 
that require mounting hardware on the target user's wheelchair, 
body, or living space.  

3. Other assistive technology usage 
Our team is intimately familiar with our target user’s past and 
current AT. This knowledge helped us understand what might 
work for email access. We describe both speech and non-
speech devices to illustrate where ASR has been used and 
where other channels were more appropriate. 

Wheelchair control: Our target user operates a power 
wheelchair using proximity switches embedded in his 
headrest. He has independent control of driving, adjusting 
speed, tilting the chair, and changing modes. The headrest 
proximity switches have proven to be a robust access pathway 
for the target user’s wheelchair. By using switches to operate 
in different modes and by activating combinations of switches 
to perform different functions, he can control dozens of 
wheelchair functions independently. 

Television control: Our target user has an InVoca 3.0 
Voice Activated Remote Control for controlling his television. 
This commercially available device allows users to program 
custom keywords that are transmitted as infrared signals, 
similar to any conventional TV remote control. It rests in a 
custom-built wooden stand on our target user’s wheelchair 
tray, and he can instruct a caregiver to place the remote control 
in its recharge cradle (which is not on the wheelchair) at night.  

The InVoca has worked well, even in environments with 
television or other ambient noise. Its major limitation is that it 
can only handle approximately 20 words or phrases.  In 
addition, fluctuations in our target user’s voice (even the 
common cold) can present significant challenges. 

Telephone control: The target user has a voice-activated 
telephone system. Typically, a caregiver helps him don a 
headset connected to his landline telephone. From that point 
onwards, he uses a breath-activated switch to cycle through a 
preset list of telephone numbers.  One of these preset numbers 
is tied to a commercially available voice recognition virtual 
assistant service, which contains an extended address book. 
This setup allows him to dial more than 50 contacts. 

Our target user has had considerable success with this 
system and continues to use it for telephone calls, but the need 
for outside assistance reduces its convenience and his privacy. 
Furthermore, since our target user likes to communicate with 
family and friends in different time zones, it is not always 
feasible to coordinate mutually agreeable phone scheduling. 
An asynchronous communication medium like email could be 
useful for staying in touch with these contacts. 

Spoken dialogue system: Our target user participated in 
a study that evaluated an assistive probabilistic dialogue 
system. This work hypothesized that that using confirmation 
questions to clarify the user’s intent would help improve 
dialogue success rates for high-error speakers (the concept 
error rate of our target user in this study was 56.7%). As 
described in [4], the system helped the user complete more 
dialogues successfully in a supervised experimental setting, 
compared to a simpler baseline. While promising, the dialogue 
system would need to be deployed in a longer study to 
determine whether it is sufficiently useful for our target user. 

3.1. Computer access 

Our target user has tried numerous devices for desktop 
computer access with mixed success. While each of these 
technologies had drawbacks, they contributed to our insight 
into the user’s preferences and abilities.  

First, despite training commercial speech recognition 
software (Nuance Dragon NaturallySpeaking 7.0, and later, 
10.0) with our target user’s speech and adjusting the settings to 
the best of our ability, such software packages were too 
unreliable to allow him to use a desktop computer effectively. 
Our target user would often have to resort to time-consuming, 
lower-level mouse-scrolling commands instead of faster 
shortcut commands. Moreover, some software programs, such 
as browser-based Google Gmail, were not optimized for 
speech-based access, thereby increasing the failure rate. 

We also tested non-speech access channels. Our target 
user tried using a head mouse, in which an infrared camera 
follows an infrared-reflecting sticker controlled by head 
movements, combined with an onscreen keyboard like Dasher 
[2]. Despite his use of headrest proximity switches, this 
method proved challenging: he experienced rapid onset of 
fatigue, double vision, and exacerbation of facial pain from 
SPMS-associated trigeminal neuralgia from the head and neck 
movements required to operate the headmouse successfully.          

To address these speech-recognition and user-interface 
challenges, a team of undergraduate students in a semester-
long course called Principles and Practice of Assistive 
Technology (PPAT) focused on how to make a desktop-
computer setup more usable for our target user [3]. They 
evaluated different microphone stands, computer setups, and 
speech recognition software in our target user’s bedroom. By 
working closely with the target user, the team determined that 
a desktop computer with the target user’s large television set 
as a display would be a workable solution. Their work 
contributed to the groundwork for our current solution, which 
we describe next.  

4. Email system description 
The current system is situated in our target user’s bedroom and 
allows him to keep in touch with friends and family through 
emails. Our customized email client has two components that 
make it effective for the target user: first, the user interface is 
optimized for speech-based access, with the ability to skip 
down to the desired message, open messages, reply, and delete 
messages with single voice commands. Second, to overcome 
speech recognition limitations, the emails are in the form of 
20, 30 or 45-second audio messages, not transcribed text, that 
are sent as an attachment. Figure 1 shows a schematic of the 
entire user, hardware, and software setup, while Figure 2 
shows the actual setup in his bedroom at TBH. 

4.1. Hardware: Computer, screen, and audio capture 

A large, flat-screen television serves as the display for a 
Windows 7-based computer. The target user also watches 
television on this screen, so he is comfortable viewing it for 
extended time periods. 

Voice input occurs through two audio capture devices: 
First, we use the aforementioned InVoca device to switch 
between the cable television services and computer display 
inputs. As before, this device sits on the target user’s 
wheelchair tray. Second, to record audio email messages, we 
use a Microsoft Kinect device which includes an array 

Figure 1 
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microphone. Although a close-talking microphone or headset 
could result in a clearer voice signal, these alternatives would 
require more precise positioning and outside assistance. We 
found that the Kinect’s built-in mechanisms to improve speech 
capture (such as sound localization and beamforming) worked 
well for the target user’s needs. 

 
Figure 1: Schematic of speech-based email client. 

 
Figure 2: Actual bedroom setup with 1) television, 2) 
Kinect, 3) computer, and 4) wheelchair with voice 
activated remote control 

4.2. Speech recognition and customized email client 

Our system uses Windows Speech Recognition, which has 
well-supported Kinect application programming interfaces 
(APIs) to process the Kinect’s audio stream. Based on the 
current mode of the software (browsing or composing 
messages), a small set of custom grammar files are 
dynamically loaded. Setting this constraint dramatically 
improves the recognition rate since the grammar is targeted to 
the task at hand. The grammar is set to recognize vocabulary 
for one of about 45 pre-determined phrases required for the 
custom email software to function. 

We developed a customized email client for our target 
user. As shown in Figure 3, the user interface shows a green 
square to indicate that the speech recognizer is active; a text 
box displaying the currently recognized speech (which is  
“Go” in Figure 3), and the “From” and “Subject” headers for 
several email messages. At the end of an utterance, the email 
client parses the recognized speech and also shows a 
percentage confidence score for the utterance in large text. 

The target user can move the active message (highlighted 
in light blue with a triangle on the left side) with commands 
such as “Move down #” (where “#” is between 1 and 10) to 
skip to the desired message. He can then say “Open message” 
to view the message body, and “What does it say” in order to 
activate the Windows 7 voice synthesizer, which reads the 
emails to him when he is too tired or his eyes are not focusing 

clearly. The system reads the subject, sender and body of the 
message and recognizes when to stop reading the message 
body when the signature or quoted text is reached.  Finally, he 
can reply to messages or choose from a pre-determined 
address book of contacts, all with further voice commands.  

The email client automatically scans all attachments and 
includes them directly inline when displaying the message.  
This makes it easier for the user to view picture attachments 
without having to click or double click as with traditional 
email readers.  It also detects links to sites such as YouTube 
and places large icons on the toolbar, allowing the user to 
easily navigate off to these external sites from the email client.  
New contacts are automatically added to the contact list 
simply when emails are received from a new individual.  The 
system also automatically archives all picture attachments into 
a folder hierarchy so that the target user can replay slideshows 
of all these photos whenever he wants. 

5. Results: Current usage 
The speech-based email system has been used continuously by 
our target user since February 2012. Between February 2012 
and June 2013, the system has handled 460 received messages 
and 210 sent messages. In peak weeks, he has sent 10 to 20 
emails to his contacts. These usage statistics are noteworthy 
because our target user had never sent emails without 
assistance before the creation of this system. While the system 
is not perfect and the speech recognition sometimes falters, the 
benefits of email communication have made this system 
acceptable for our target user.   

 

 

Figure 3: Screenshot of user interface. 

5.1. Observations on Usage 

Through long-term user observations and unstructured 
interviews, we have learned about how our target user 
interacts with the system. Typically, he does not reply to every 
message, but rather replies once to every few messages from a 
given person so that the sender knows he has read the emails. 
This behavior is feasible because the user has a small group of 
contacts who appear to be sending him emails regularly.  

It is worth noting that our target user still uses the 
telephone because it enables immediate, two-way 
communication. While we have not done formal monitoring, it 
appears that the email system has augmented, not replaced, his 
telephone usage. He especially values messages with photo 
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attachments of friends and family, which cannot be transmitted 
by telephone. He also receives many emails containing comic 
strips, jokes, and YouTube video links. 

The target user has become adept at interpreting the user 
interface’s visual cues and using these cues to adapt his 
behavior accordingly. For example, the hypothesized utterance 
and the large percentage confidence score are both displayed 
on the television screen. These cues allow him to see whether 
he needs to speak differently, adjust the microphone, reduce 
background noise, or report a bug. 

6. Discussion 
The process of developing the email system has yielded 
significant insights into developing customized speech-based 
assistive technology. 

6.1. Factors for success 

We believe that there were three main reasons why our target 
user has adopted the email system: 

6.1.1. Design for a single user 

Our approach focused intensely on our target user. Our 
success metric – and our singular goal while developing the 
system – was to enable him to communicate more frequently 
with friends and family. As a result, our work was tailored 
very specifically to the target user’s abilities, preferences, 
environment, and feedback. Instead of focusing on an 
innovation that could potentially generalize across many users, 
our work deliberately was driven by our sole target user. 
Interestingly, it may be that some elements of system could be 
useful to other people, meaning that, in the process of seeking 
measurable impact on our target user, we have identified some 
generalizable components or ideas. 

6.1.2. Multidisciplinary collaboration 

Our team of authors has backgrounds in AT research, 
rehabilitation technology, speech-language pathology, speech 
recognition, and software development. In addition, some of 
our team members are staff or clinicians in the residential-care 
setting itself, which helped ensure that necessary issues or 
adjustments could be dealt with in a timely manner. The time 
and skills of each of these individuals were essential to the 
success of this project. The project would not have succeeded 
without any of the hardware and software components, readily 
available onsite support and physical care, and extensive 
speech therapy and training.   

6.1.3. Frequent and long-term interaction with the user  

The current system is the product of many years of interacting 
with our target user and learning from his AT usage patterns. 
For example, it is clear why the InVoca voice-activated remote 
control continues to be used: it is robust, requires little outside 
assistance or intervention to be operated, and enables him to 
watch television independently. In contrast, steep learning 
curves, reliability issues, and interface challenges made other 
speech technologies less appropriate. We considered these 
experiences as we developed the current system. 

Perhaps more importantly, working with our target user 
over several years has allowed us to develop a working 
relationship that extends beyond simply being a research 
subject for new technologies. Whenever possible, we strived 

to incorporate his motivations, ideas, and direction, and we 
based our design decisions on in-home user observation. Such 
an approach may bear intrinsic value when working with 
people with disabilities, who often find mismatches between 
their abilities and existing technology. More directly, frequent 
communication and design iteration has helped us understand 
the subtleties that separate AT non-use from AT adoption. 

6.2. Limitations 

The purpose of this paper is to document the process leading 
to the development of a usable speech-based email client for 
our single target user. Our goal was not to develop a system 
that would necessarily work for other users. It may be the case 
that other users would find the limitations of our system 
unacceptable, or that their speech recognition error rates would 
be too high to use it successfully. Answering this question 
would only be possible with a study involving more users.  

Clearly, the current system has limited functionality. The 
features that we did prioritize, though, made it possible for our 
target user to communicate with friends and family. 
Interestingly, through his extended usage, he has suggested 
feature ideas, including the ability to place pre-defined sets of 
sentences into emails for simple messages or pre-downloading 
attachments while he is sleeping so that emails load faster 
during the day. As a next step, our target user is interested in 
adding video calling capabilities. A separate grammar for 
Skype functions should make it possible to implement this 
feature without compromising speech recognition accuracy. 

While actually deploying useful AT can be time-
consuming and difficult, our efforts have helped us remain 
connected to the realities of users. Our work suggests relevant 
areas of inquiry for this user population, including the need to 
adapt acoustic models to speakers who may not be able to 
access a close-talking microphone, speech recognition that is 
robust to environmental noise in healthcare settings, and 
graphical user interfaces tailored to people who may have co-
occurring vision or other impairments.  

7. Conclusions 
We described the implementation of a system that uses speech 
recognition to allow a single user to communicate via email 
with friends and family. The process of developing this 
assistive technology was made possible by embracing the 
target user’s goals, focusing on a practical solution, learning 
from past devices and technologies, and drawing from our 
diverse professional backgrounds and skills. Building real-
world, actual implementations of working assistive devices 
could help define worthwhile research efforts and illuminate 
the characteristics of successful assistive technology. 
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Abstract
People with motor disabilities often face substantial chal-
lenges using interfaces designed for manual interaction. Al-
though such obstacles might be partially alleviated by auto-
matic speech recognition, these individuals may also have co-
occurring speech-language challenges that result in high recog-
nition error rates. In this paper, we investigate how augmenting
speech applications with dialogue interaction can improve sys-
tem performance among such users. We construct an end-to-end
spoken dialogue system for our target users, adult wheelchair
users with multiple sclerosis and other progressive neurolog-
ical conditions in a specialized-care residence, to access in-
formation and communication services through speech. We
use boosting to discriminatively learn meaningful confidence
scores and ask confirmation questions within a partially observ-
able Markov decision process (POMDP) framework. Among
our target users, the POMDP dialogue manager significantly in-
creased the number of successfully completed dialogues (out of
20 dialogue tasks) compared to a baseline threshold-based strat-
egy (p = 0.02). The reduction in dialogue completion times
was more pronounced among speakers with higher error rates,
illustrating the benefits of probabilistic dialogue modeling for
our target population.
Index Terms: spoken dialogue systems, speech interfaces,
POMDPs

1. Introduction
People with mobility or physical impairments may have dif-
ficulty with touch-based user interfaces. Automatic speech
recognition (ASR) potentially offers an alternative, natural
means of device access, but such systems can still be chal-
lenging to use for individuals who have speech impediments
or disorders. For example, mismatches may exist between their
speech and that of trained ASR systems. These technical chal-
lenges mean that ASR often fall short of its potential as an ac-
cess equalizer for people with disabilities [1].

Current approaches to recognizing speakers with disabili-
ties often use speaker adaptation techniques [2, 3]. Such train-
ing, however, may be costly, tiring, and difficult for the speaker.
As well, in some real-world systems, it may not be possible to
access or adapt the underlying acoustic models. Meanwhile, in
many assistive technology applications, such as device control
or information access, the success metric may not be the word
error rate, but rather whether the system successfully under-
stands the user’s intent and ultimately responds correctly. Mo-
tivated by this abstraction, and faced with highly challenging
speech, we seek to construct a system that optimizes perfor-
mance at the user intent level.

The present paper describes the use of probabilistic dia-
logue modeling for a population of speakers with high recog-
nition error rates. Specifically, we developed an assistive spo-

ken dialogue system in a partially observable Markov decision
process (POMDP) framework, in which the the dialogue sys-
tem seeks to infer the user’s intent and handles speech recog-
nition uncertainty by asking confirmation questions. We learn
models of: 1) how speech recognition hypotheses map to user
intents and 2) meaningful confidence scores from ASR features
so that our dialogue manager can make better response deci-
sions. Our work draws on modeling techniques from work in
spoken dialogue system POMDPs (e.g., [4, 5, 6]) and is inspired
by other POMDP-based assistive technologies for handwashing
(e.g., [7]) and intelligent wheelchair navigation (e.g., [8, 9, 10]),
all of which model the user’s intent as a hidden state to be in-
ferred from observations.

Our work has two main contributions. First, we defined and
modeled our problem as a spoken dialogue system POMDP by
understanding our users and the design constraints. We col-
lected data specifically for this application, trained the proba-
bilistic models that are part of the dialogue system, and made
design decisions appropriate to our application, all of which
we describe in this paper. Second, we conducted experiments
involving speakers with disabilities that demonstrated the ef-
fectiveness of the POMDP framework under high-error condi-
tions. As illustrated in our results, handling uncertainty with the
POMDP-based dialogue manager led to higher dialogue com-
pletion rates and shorter dialogue times, particularly for users
with high speech recognition error rates.

This paper is structured as follows: We describe our assis-
tive technology application domain and our target user popu-
lation (Section 2), the formulation of our POMDP-based spo-
ken dialogue system (SDS-POMDP) (Section 3), our model-
building efforts (Section 4), and the experiments designed to
test the effectiveness of our end-to-end system (Section 5). We
conclude with insights on using dialogue interaction for assis-
tive technology.

2. Problem Domain
Our target population is the residents at The Boston Home
(TBH), a specialized-care residence in Boston, Massachusetts,
USA for adults with multiple sclerosis (MS) and other progres-
sive neurological conditions, and our goal is to develop speech-
enabled assistive technology that can be bedside or wheelchair
accessible. One example physical setup for a resident is shown
in Figure 1. MS and other related neurological conditions are
often associated with co-occurring speech pathologies, includ-
ing rapid fatigue, voice weakness, very slow speaking style, or
mild to severe dysarthria [11]. In addition, cognitive impair-
ments associated with MS can also lead to language disorders
[12], which could challenge conventional ASR language mod-
els.

Table 1 illustrates the performance of our ASR system on
on 30 utterances for members of our target population. All of
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Figure 1: Example bedside setup of speech interface in
resident room at TBH.

the utterances were processed by the MIT SUMMIT speech rec-
ognizer [13] using the same set of acoustic and language mod-
els. Our target users were seven adult residents at TBH (5 male,
2 female, ages 45 to 70), all of whom use wheelchairs and ex-
pressed an interest in using a speech recognition-based system.
More precisely, our metric of interest is whether the speech
recognition hypothesis maps to the user’s intent — an utterance
is labeled “correct” if its top hypothesis and its ground-truth la-
bel map to the same intent in our dialogue system. For example,
if the utterance “what is monday’s lunch menu” is hypothesized
as “what is monday the lunch”, this utterance would be marked
as correct because both the hypothesis and the label correspond
to the intent (lunch monday).

Table 1 also shows the performance of the speech recog-
nizer for a control group of seven students (6 male, 1 female,
ages 21 to 32) without speech impairments of any kind. The
target and control users are not paired in any way; our main
reason for showing the system performance with these control
users is to provide a quantitative sense of how the speech of our
target users is handled conventional ASR systems. In addition,
by evaluating our system with both target and control users in
our dialogue system, as we show in Section 5, we can compare
the value of using dialogue among high- and low-error speakers.

Table 1: Concept error rates (30 utterances) for target and
control populations

Speaker
(Target)

Intent
Error Rate

Speaker
(Control)

Intent
Error Rate

target01 13.3% control01 3.3%
target02 3.3% control02 10.0%
target03 33.3% control03 6.7%
target04 56.7% control04 13.3%
target05 26.7% control05 3.3%
target06 9.4% control06 3.3%
target07 6.6% control07 0.0%

mean 21.4% mean 7.5%
std. dev. 18.9% std. dev. 4.3%

Clearly, the target group of users has a much higher error
rate, meaning that a system that simply parses the top hypoth-

esis would be unusable for many target users. This research
hypothesizes that dialog strategies that consider the uncertainty
associated with user utterances can enable higher task comple-
tion rates, particularly for speakers with high speech recogni-
tion error rates. The system should handle ASR errors robustly,
with the aim of deciphering the user’s intent in order to respond
appropriately.

3. Partially Observable Markov Decision
Processes (POMDPs) for Spoken Dialog

Substantial research exists on modeling spoken dialogue as
a partially observable Markov decision process (POMDP)
[4, 5, 6]. Briefly, a POMDP is specified as a tuple
{S, A, Z, T, Ω, R, γ} and is a sequential decision model that
handles uncertainty in the environment in a principled way. A
POMDP spoken dialogue system (SDS-POMDP) treats speech
recognition results as noisy observations of the user’s intent: it
encodes the user’s intent as a hidden state, s ∈ S; automatic
speech recognition hypotheses as observations, z ∈ Z, of that
state; and system responses as actions, a ∈ A. The transition
model T = P (s′|s, a) gives the probability that the user’s in-
tent will change to s′ given the previous intent s and the system
action a; the observation model Ω = P (z|s, a) describes the
probability of ASR observation z for a given intent s and action
a; and R(s, a) specifies the immediate reward associated with
each system action a and user intent s. The discount factor γ
is a parameter (0 ≤ γ ≤ 1) that weighs the value of future
rewards to immediate rewards.

Bayesian filtering is used to infer a distribution over the
user’s state at each time step t from the history of actions and
observations, p(st|a0:t, z0:t) [14]. This distribution is usually
referred to as the belief, b. The SDS-POMDP maintains the be-
lief distribution, b, over the user’s possible intents and chooses
actions based on a policy, Π(b), that maps every possible belief
to an action, a, in order to maximize the expected discounted
reward,

∑
t

γ−tR(s, a). We describe the key elements of the

SDS-POMDP in the context of the system that we developed
for our experiments below.

3.1. SDS-POMDP System Implementation

User Goals (States, S) and System Responses (Actions, A):
When a user interacts with the dialogue manager, we assume
that he or she has a goal, s ∈ S. The purpose of the dialogue
manager is to choose an action, a ∈ A, that satisfies the user’s
goal. More precisely, the dialogue manager seeks to infer which
goal the user is trying to achieve and take an appropriate action.

For our system, we identified the following areas of interest
to residents at TBH:

• Time and date;
• Recreational activities schedules;
• Breakfast, lunch, and dinner menus;
• Making phone calls.

Our SDS-POMDP has 62 states, corresponding to each of the
possible user goals. For example, (weather today) or
(make phone call) are two different states.

The definition of the action space, A, follows from the
set of states. For every state, there are two correspond-
ing action: one that asks the user for confirmation, and the
other “executes” that goal in the SDS-POMDP’s user inter-
face. For example, the state (weather today) has two
corresponding actions: (confirm, (weather today))

68



and (show, (weather today)). In addition, the SDS-
POMDP can greet the user or ask the user to repeat, for a set of
126 system actions.

ASR Outputs (Observations, Z): The SDS-POMDP uses
the aforementioned MIT SUMMIT speech recognizer [13].
Each spoken utterance is processed into a ten-best list of hy-
potheses with acoustic and language model scores. We then
extract keywords to deterministically map the top hypothe-
sis into one of 65 concepts: observations corresponding to
each of the 62 goals (such as ( weather today ) and
(lunch monday)), a ( yes ) and ( no ) command,
and a ( null ) command if there is no successful parse.
Meanwhile, the text of the ten hypotheses for each utterance,
along with the acoustic and language scores for each utterance
computed by the speech recognizer, are used as features to as-
sign a confidence score to the hypothesis, as detailed in Sec-
tion 4. An observation z in the SDS-POMDP, therefore, consist
of a discrete part, zd (one of 65 possible parses) and a continu-
ous confidence score, zc (where 0 ≤ zc ≤ 1).

Observation Model (Ω): Ω = P (z|s, a) is our model,
learned from data, of recognition hypotheses given the user’s
intent, s, and the system’s response, a. As described above,
our observations consist of a discrete (zd) and a continuous (zc)
part, meaning that we need to learn the model P (zd, zc|s, a).
We factor the observation function into two parts as per Equa-
tion 1 using the chain rule:

Ω = P (zd, zc|s, a) = P (zd|s, a)P (zc|s, a, zd) (1)

The first term, P (zd|s, a) is estimated from our labeled data
using maximum likelihood; for each discrete observation z∗

d ,
the value P (z∗

d|s, a) is computed as follows:

P (z∗
d|s, a) =

c(z∗
d , s, a)∑

zd
c(zd, s, a)

(2)

Meanwhile, for the term P (zc|s, a, zd), data sparsity makes
it challenging to directly learn the model of confidence score for
every (s, a, zd)-triple. To mitigate this issue, we use an approx-
imation similar to the one used by [15], where we learn two
models: 1) the distribution of confidence scores when the ut-
terance hypothesis is correct (P (zc|correct observation)), and
2) the distribution of confidence scores when there is an er-
ror (P (zc|incorrect observation)). The motivation for this ap-
proach is that correctly recognized utterances should have a dif-
ferent distribution of confidence scores than incorrectly recog-
nized utterances. In addition, an equivalent statement to the ob-
servation being correct is that that zd corresponds to s (denoted
below as zd 7→ s). As a result, for all possible user goals s and
discrete observations zd, we can approximate P (zc|s, a, zd) as
follows:

P (zc|s, a, zd) =

{
P (zc|correct observation) if zd 7→ s

P (zc|incorrect observation) otherwise
(3)

We describe our efforts to learn the confidence score
model from our data in Section 4. Figure 3 illustrates
that, indeed, the distributions of P (zc|correct observation) and
P (zc|incorrect observation) are different in our dataset. These
two models capture the insight that the confidence score con-
tains information about whether the utterance has been correctly
or incorrectly recognized. By assuming that the distribution of
confidence scores for correct and incorrect observations are the
same for every concept, our approach helps overcome data spar-
sity issues.

Transition Model, T: For our prototype system, our transi-
tion function T = P (s′|s, a) is simple: we assume that that the
user’s goal does not change over the course of a single dialog,
meaning that the transition function equals 1 if sn+1 = sn and
0 otherwise.

Reward Function, R: The reward function specifies a pos-
itive or negative reward for each state-action pair in the SDS-
POMDP; as a result, it is described by as R(S, A). We hand-
crafted a reward function that has positive rewards for “correct”
actions (e.g. showing the user the weather if the user’s goal was
to know the weather), large negative rewards for “incorrect ac-
tions” (e.g. making a phone call if the user’s goal was to know
the lunch menu), and small negative rewards for information-
gathering confirmation questions. The reward for confirmation
questions that do not correspond to the user’s goal is slightly
more negative than for the “correct” confirmation question.

Belief Updates: Over the course of a dialog, our SDS-
POMDP updates the belief distribution, b, from the observed
hypothesis, the observed confidence score, and the transition
function, T = P (s′|s, a). At time step n+1, the SDS-POMDP
uses these models and the prior belief, bn, to compute bn+1:

bn+1(s
′) ∝ P (zd|s′, a)P (zc|s′, a, zd)

∑

s

P (s′|s, a)bn(s)

(4)

During runtime, the SDS-POMDP does not have access to the
ground-truth label of the user’s utterance. For each state s′,
the terms P (zd|s′, a) and P (zc|s′, a, zd) are chosen from the
appropriate conditional probability distribution in Equations 2
and 3, respectively.

Computing the Policy, Π: The policy, which maps beliefs
to actions, is computed offline from the specified models in the
SDS-POMDP. Given how we incorporate the continuous con-
fidence score zc into the observation function Ω, conventional
methods of computing the POMDP policy are computationally
expensive. We chose the QMDP approximation to compute the
policy for the SDS-POMDP. While QMDP is a greedy heuris-
tic, as opposed to an optimal POMDP solution, we hypothesized
that it could produce an effective dialogue policy in our work.
Specifically, the QMDP algorithm computes a function Q for
each state-action pair,

Q(si, a) = R(si, a) +
N∑

j=1

V̂ (si)P (sj |si, a) (5)

where V̂ is the converged value function of the SDS-POMDP’s
underlying Markov decision process (MDP) [16]. Then, for a
belief state b = (p1, p2, ...pN ), where pi corresponds to the
probability mass in state i, the policy is simply

Π(b) = arg max
a

N∑

i=1

piQ(si, a) (6)

It is impractical to describe the policy’s prescribed action
for every possible b in our system, but a few representative be-
lief points and corresponding actions are:

1. if b is uniform, then the dialogue system asks the user to
repeat;

2. if b has very high probability in one state, s∗, and the re-
mainder of the probability mass is uniformly distributed
in the other states, then the dialogue system takes the ter-
minal action corresponding to that state;

69



3. between situations 1 and 2, i.e. if the probability mass
in s∗ is not high enough for the system to perform the
terminal action, then it will ask a confirmation question
corresponding to s∗.

User Interface: Finally, the user interface for the SDS-
POMDP is presented to the user on a netbook computer. In our
current implementation, the speech recognizer is run locally. A
screenshot of the interface is shown in Figure 2.

Figure 2: Graphical user interface of assistive spoken dialogue
system, with indicators of time, system state (“Awake”), and

speech synthesizer state (“Voice On”).

4. Model Training and Confidence Scoring
Data Collection: A total of 2701 utterances were collected
and manually transcribed from volunteers in our research lab
and at TBH. Participants were prompted with possible goals
and asked to speak a natural-language command corresponding
to the goal, prefaced by an activation keyword like “chair” or
“wheelchair.” Because our target population has difficulty using
buttons or other physical access devices, a speech-activity de-
tector based on the measured spectral power of the audio signal
was used instead of a push-to-talk activation method typical in
many speech applications. This corpus of utterances was used
to estimate the discrete and continuous parts of the observation
model Ω, as summarized in Equations 2 and 3.

Learning the Confidence Score: To learn the confidence
score, zc, each of the 2701 utterances was labeled as “correct”
(+1) if the parse of the top hypothesis matched the parse of the
transcription and “incorrect” (−1) otherwise. We then extracted
features from each utterance’s 10-best list and trained a classi-
fier on 90% of the utterances using AdaBoost [17]. At each iter-
ation, AdaBoost chooses a feature with the lowest weighted er-
ror, and re-weighs training data points by assigning more weight
to misclassified examples; some of the features that it selected
are shown in Table 2. Using this weighted set of features, the
classification error rate on a held-out test set (10% of the utter-
ances) was 6.9%.

Next, we fit a logistic regression curve to AdaBoost’s
weighted sum of features to interpret the AdaBoost classifier’s
result as a confidence score. The resulting distribution of confi-
dence scores for correctly and incorrectly recognized utterances
is shown in Figure 3. For a given confidence score zc, we can
compute the necessary quantities in Equation 3 from these two
histograms. These two distributions reveal that the confidence
score contains important information about whether the ob-

Table 2: Features selected by AdaBoost classifier

Feature
Category

Examples

Concept-
level

parse success; category of concept

ASR scores acoustic, language, and total model
scores; difference between top score
and second-highest hypothesis score

Word-/
sentence-
level

fraction of stop words; presence of mul-
tiple concepts; presence of highly mis-
recognized words or often merged/split
word pairs

n-best list concept entropy of n-best list; frac-
tion of total acoustic or language model
scores

served concept is correct or incorrect. During the belief update
step of the SDS-POMDP, we draw from the “correct observa-
tion” distribution for the state corresponding to the observation
concept and from the “incorrect observation” distribution for all
other states. For example, the hypothesis (lunch, today)
paired with a high confidence score could shift the belief distri-
bution sharply toward the corresponding (lunch, today)
state; in contrast, a low confidence score could actually cause
the probability mass to shift away to other states.
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Figure 3: Distribution of confidence scores for correct
(P (zc|correct observation)) (left) and incorrect

(P (zc|incorrect observation)) (right) utterances.

5. SDS-POMDP Experiments
5.1. Experimental Design

We conducted a within-subjects study that compared our SDS-
POMDP dialogue manager to a baseline threshold-based dia-
logue manager. In the SDS-POMDP, each dialogue began with
a uniform distribution over states, the belief was updated ac-
cording to Equation 4, and the system response was selected
using the learned policy. In the threshold-based model, the con-
fidence threshold was set at 0.75, where the system would ask
the user to repeat if the threshold was not achieved.

The 14 individuals listed in Table 1 (seven “target” users
and seven “control” users) participated in our experiments,
which consisted of a single session for each user. In the session,
the user was required to complete 40 dialogues. The 40 dia-
logues consisted of 20 goals, each presented once with the SDS-
POMDP and once with the threshold-based dialogues manager.
We randomized the ordering of the dialogues so that either the
POMDP or baseline dialogue manager would be presented for a
particular goal first. In addition, the same goal did not appear in
consecutive dialogue tasks. Users were not told which dialogue
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manager was in operation for a given task.
Although a threshold-based, memory-less baseline dia-

logue manager is simple, we chose it as our point of compar-
ison because it represents the current approach used by many
existing speech-enabled assistive technologies. Such a system
could potentially have advantages over the SDS-POMDP; for
instance, there is no risk that belief probability mass would ac-
cumulate in incorrect states and require the user to speak addi-
tional utterances to correct errors. Meanwhile, it might have
been useful to try to learn a optimal threshold, conduct ex-
periments with different threshold-based dialogue managers, or
evaluate the POMDP-based system with dialogue management
strategies. However, because 40 dialogues already took sub-
stantial effort for some of our target users to complete, we did
not perform these additional points of comparison.

Each of the dialogue tasks was presented with a text prompt
on our graphical user interface, similar to the one shown in Fig-
ure 2. Our evaluation metrics were 1) the total number of dia-
logues (out of 20) completed within 60 seconds and 2) the total
duration of the dialog, from the start of the user’s first utterance
until the system executed the correct response.

5.2. Results

All seven control users were able to complete all 20 dialogues
successfully within 60 seconds. In contrast, as shown in Ta-
ble 3, the seven target users completed an average of 17.4 out of
20 dialogues successfully with the SDS-POMDP and 13.1 with
the threshold-based dialogue manager. A one-way repeated-
measures ANOVA indicates a significant effect of the SDS-
POMDP on the number of dialogues completed within sixty
seconds (F(1,6)=10.23, p =.02), compared to the threshold-
based model.

Table 3: Number of completed dialogues by target population
users by dialogue manager

User SDS-POMDP (/20) Threshold (/20)
target01 18 13
target02 17 16
target03 20 20
target04 19 18
target05 13 5
target06 18 10
target07 17 10
average 17.4 ± 0.9 13.1 ± 0.9

In terms of dialogue completion times, the performance of
the threshold-based and POMDP-based dialogue managers for
all 14 participants is shown in Figure 4. In the case of unsuc-
cessful dialogues, we assume that the total time elapsed was 60
seconds to compute the values in Figure 4.

6. Discussion
6.1. Analysis of Results

The results in Table 3 show that the target population users ben-
efited considerably from the POMDP-based dialogue manager.
In general, this improvement was due to users being able to
achieve the dialogue goal after a few low-confidence utterances
in the SDS-POMDP; in contrast, they were unable to generate a
correct utterance above the confidence threshold in the required
time.

Figure 4 illustrates that the largest improvements, in terms

Figure 4: Dialog durations for POMDP- and threshold-based
dialogue systems for control (c01-c07) and target (t01-t07)

users. Error bars show standard error of the mean.

of time saved, were among users with the highest completion
times with the baseline system. These users were able to com-
plete dialogues in less time using the SDS-POMDP. This trend
underscores the benefit of probabilistic dialog management in
handling noisy speech recognition inputs: the SDS-POMDP
performs just as well as simpler, threshold-based methods for
speakers with low ASR error rates (i.e. the control participants),
but as the uncertainty increases among users with more ASR er-
rors, the SDS-POMDP becomes superior.

The key advantage of the SDS-POMDP over the baseline
was that it acquired information about the user’s intent from
every utterance. The top recognition hypothesis and the confi-
dence score updated the SDS-POMDP’s belief. In cases where
there was a speech recognition error, it was likely that some
probability mass was allocated to the user’s actual goal. As
well, utterances with speech recognition errors were more likely
to have lower confidence scores, resulting in less “peaked” up-
dates to the belief. This behavior meant that probability mass
was not incorrectly allocated to the goal corresponding to the in-
correct hypothesis. For these reasons, over the course of multi-
ple dialogues, the SDS-POMDP’s belief update operation made
it superior to the threshold-based dialogue manager.

7. Conclusion
This paper offers empirical evidence that probabilistic dialog
modeling, particularly the use of confidence scoring and con-
firmation questions in a POMDP framework, could enhance
the effectiveness of spoken dialogue systems among users with
high ASR error rates. By asking confirmation questions, a sys-
tem can become more confident about taking the right action
or avoid taking incorrect actions. Such methods could be use-
ful for deploying speech-enabled assistive technology among
users with challenging speech characteristics or in other situa-
tions where error-prone speech recognition is expected.
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Abstract
In this work we describe research aimed at developing an assis-
tive vocal interface for users with a speech impairment. In con-
trast to existing approaches, the vocal interface is self-learning,
which means it is maximally adapted to the end-user and can
be used with any language, dialect, vocabulary and grammar.
The paper describes the overall learning framework and the
vocabulary acquisition technique, and proposes a novel gram-
mar induction technique based on weakly supervised hidden
Markov model learning. We evaluate early implementations
of these vocabulary and grammar learning components on two
datasets: recorded sessions of a vocally guided card game by
non-impaired speakers and speech-impaired users engaging in
a home automation task.
Index Terms: vocal user interface, self-taught learning,
dysarthric speech, non negative matrix factorization, hidden
Markov models

1. Introduction
These days, vocal user interfaces (VUIs) allow us to control
computers, smart phones, car navigation systems and domestic
devices by voice. While still generally perceived as a luxury,
assistive technology employing a VUI can make a prominent
difference in the lives of individuals with a physical disability
for whom operating and controlling devices would require ex-
haustive physical effort [1].

Unfortunately, even state-of-the-art speech recognition sys-
tems offer little, if any, robustness to dialectic or dysarthric
speech (often encountered with disabled users), and are often
restricted in their vocabulary and grammar. In practice, it is not
feasible to design speech interfaces featuring custom acoustic
and language models that cater to the dialectic and/or patho-
logical speech of individual users, and adaptation of existing
acoustic models is limited to only very mild speech pathologies
[2, 3, 4, 5, 6]. Moreover, the user’s voice may change over time
due to progressive speech impairments.

Our aim is to build a VUI that is trained by the end-user
himself, which means that it is maximally adapted to the —
possibly dysarthric — speech of the user, and can be used with
any vocabulary and grammar. The challenge is to learn both
acoustics and grammar from a small number of examples, with
as only supervisory information coarse annotation in the form of
associated actions. For example, the annotation of the command
“Turn on the television please”, accompanied by a button press,
would only be annotated at the utterance level with a device
label (television) and an action label (turn on).

Our learning approach consists of two components that in-
teract. Vocabulary acquisition first builds recurrent acoustic pat-

terns representing words or parts of spoken commands, while
grammar induction attempts to model the relationships between
these patterns. For vocabulary acquisition, we build on existing
work on child language learning modeling with non-negative
matrix factorisation (NMF) [7]. For grammar induction, we
propose the use of a weakly supervised Hidden Markov Model
(HMM).

In short, we first use NMF to find recurrent acoustic pat-
terns by mining utterance-level acoustic representations, super-
vised with relevant information about the action that was per-
formed, such as a ‘television’ device and a ’turn on’ action.
Building on these, we then use the temporal occurrence of these
patterns in the training data as observation features to train a
multi-label version of a discrete HMM [8, 9]. In the HMM, the
hidden states represent the collection of possible values in the
data structures (devices and actions in the example). By mining
the temporal occurrence of the NMF-based observations and the
commonalities and differences across commands, the HMM is
able to discover temporal structure in the commands, related to
the data structures representing the actions.

The goals of our work are similar to those of [10, 11] in that
we aim to discover acoustic patterns that recur in utterances and
ground these by linking them to other modalities. However,
to accommodate pathological voices, our work does not rely
on pre-trained models, but they are learned from the speaker-
specific acoustic data. In that sense, it shows similarities to the
work in [12], but we learn form continuous speech and do not
model low-level acoustics with an HMM. In terms of grammar
learning, our task approaches unsupervised grammar induction
[13, 14], but on a restricted domain with a small vocabulary.

We evaluate our learning framework on two databases: PAT-
COR, recorded sessions of a vocally guided card game by non-
impaired speakers, and DOMOTICA-2, speech-impaired users
engaging in a home automation task. The users were free to
choose their own words and grammatical constructs to address
the systems during the recording sessions.

The remainder of the paper is organised as follows. In sec-
tion 2, we present an overview of the learning framework, de-
scribe the acoustic representations and introduce the NMF and
HMM learning approaches. In section 3, the experimental setup
is explained and in sections 4 and 5 the experimental results are
presented and discussed. We conclude with our conclusions and
thoughts for future work in section 6.

2. Architecture
2.1. Semantic frame representation of an utterance

A semantic frame is a data structure that contains all the rel-
evant information (semantic concepts) associated with the ac-
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Figure 1: Overview of the vocal interface framework. The
white boxes indicate events or systems outside the learning
framework. The top panel shows the training phase and the
bottom panel indicates the usage phase.

tion that is expressed in the spoken command. Semantic frames
have been used in many spoken language processing applica-
tions [15]. A frame contains at least one slot representing a spe-
cific aspect of the action. Each slot in a frame can only be filled
with a single value. A frame description of an action on the
other hand, identifies a single frame out of the possible frames
where the action is specified by the actual slot values.

2.2. The learning framework

The framework (Figure 1) is designed so it can learn from user
interaction examples, i.e. a spoken command accompanied by
an action on the device’s user interface. For instance, users
might say “ Turn on the light” while pressing the button to
switch on the light themselves or through the help of a care
taker. The action performed on the device is translated into
a frame description, which constitutes an abstraction layer
making the learning algorithms application independent.

During the training phase, the word finding module looks
for word-sized recurring acoustic patterns in the audio input
that correlate well with the frame description. The frame
description acts as a weak form of supervision in finding the
recurring acoustic patterns. Here the term weak supervision
is used because the supervision does not provide explicit
information about the sequence of words within the spoken
utterance.

The grammar induction module learns the relation between
the different parts of a command. Given the frame description
and the output of the word finding module, the grammar
induction module learns the structure within commands, as
well as the relation with the frame description during the
training phase. During the usage phase, when only audio
input is available, the grammar constrains the decoding process
[16] and allows to propose a frame description of the spoken
command. This frame description is then mapped onto an
actual action on the device.

2.3. Audio representation

The word finding module in the training phase as well as the
decoder in the usage phase need a suitable representation for
the input speech. Both learning and recognition are based on

NMF (section 2.4.1), which requires that the audio representa-
tion of an utterance be the sum of the representations of individ-
ual words. Therefore, and unlike main-stream ASR systems, an
utterance is mapped to a vector of fixed size in three steps which
are described below.

2.3.1. Spectral Representation

The first step of the audio processing chain extracts a 12-
dimensional Mel Frequency Cepstral Coefficient (MFCC) rep-
resentation of the short-term spectrum from speech segments
of 25 ms with 10 ms overlap. The 12-dimensional MFCC is
augmented with the log energy and the ∆ and ∆∆ features are
appended, forming a 39 dimensional spectral feature stream.

2.3.2. Intermediate representations

The obtained MFCC spectral representations are further
processed to form posteriorgrams from which the final rep-
resentations described in section 2.3.3, are obtained. Two
different forms of posteriorgrams are considered here: a
spectral feature vector is either transformed into a vector of
posterior probabilities of Gaussians forming a code book (soft
VQ), or it is transformed to the posterior probability of phone
classes.

In Soft Vector Quantisation, each spectral feature vector is
softly assigned to all clusters in a code book. Each cluster is
characterized by a Gaussian with full covariance. The degree
of assignment is measured by the posterior probability of a
Gaussian given the spectral feature vector.
The code book training starts off from a single cluster de-
scribing all training data. It is then split along the dominant
eigenvector of its covariance matrix into two subclusters. The
centres are refined with k-means iterations after which each
subcluster is characterised by a full covariance Gaussian. This
process is repeated, each time splitting the cluster with the
largest volume as measured by the determinant of the covari-
ance matrix. This process is either stopped when the desired
number of clusters are obtained [17], which we will refer to
by Soft VQ, or when the number of spectral feature vectors
assigned to a cluster falls below a threshold, minimum-number
of frames, which is referred to as Adaptive Soft VQ, because the
number of clusters will depend on the amount of training data.

Phone posteriorgrams are constructed from 50 monophone
HMMs (including a model for silence), each modeled by three
states with GMM emission densities, connected in a strict left-
to-right topology. The utterance is first transcribed into a phone
lattice without using a phone-level language model. The acous-
tic likelihoods associated with the arcs are subsequently renor-
malised to posterior probabilities, which allows us to compute
a posterior probability for each phone at any time.

A major difference with Soft VQ is that phone posterior-
grams exploit prior knowledge about the phone inventory that
the user can produce.

2.3.3. Utterance-level HAC representation

The posteriorgrams of spectral feature clusters or of phone
classes are not suitable to model directly with an NMF. To be
able to discover recurring patterns in utterances, they need to
be mapped to a representation of fixed dimension in which lin-
earity holds, i.e. that the utterance-level speech representation
is approximately equal to the sum of the speech representations
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of the acoustic patterns it contains [18, 19]. A mapping that
exhibits this property is the so-called histogram of acoustic co-
occurrences (HAC) [19]. The HAC of a speech segment is the
posterior joint probability of two acoustic events happening at
a predefined time lag τ , accumulated over the entire segment.
An acoustic event is the observation of a spectral feature vector
from a particular cluster in the case of soft VQ, or the observa-
tion of a phone in the case of phone posteriorgrams. Since the
HAC representation considers event pairs, its dimensionality is
the square of the number of acoustic event classes. In this paper,
we stack HAC vectors computed for multiple values of the time
lag τ = 20, 50, 90 and 200 ms into a single augmented HAC
vector to characterise an utterance. When multiple (training)
utterances are available, their augmented HAC representations
are arranged as columns of a matrix Va.

2.4. Non-negative matrix factorisation

NMF uses non-negativity constraints for decomposing a matrix
into its components [20, 21, 22, 23], i.e given a non-negative
matrix V of size [MxN ], NMF approximately decomposes it
into its non-negative components W of size [MxR] and H of
size [RxN ]. Under the right conditions, NMF is able to find
parts in data. In ASR, NMF is used to discover recurring acous-
tic patterns (word units) through some grounding information
[24, 25, 26].

In this paper, we use the Kullback-Leibler divergence to
quantify the approximation quality of the NMF as expressed in
Eq 1.

(H,W) = arg min
(H,W)

DKL( V || [WH]) (1)

Finding the W and H that minimize this approximation
metric for a given data matrix V is achieved using multiplica-
tive update rules[20].

2.4.1. Supervised NMF word learning

To employ NMF for word learning, we use a weak form of
supervision represented by Vg , which is used together with
the augmented HAC acoustic representation of all the training
utterances stacked into a matrix Va. The supervision informa-
tion links the discovered acoustic patterns to slot values and
also helps NMF to avoid local optima of the Kullback-Leibler
divergence. The supervision Vg is a label matrix where each
column represents an utterance and each row represents a slot
value. The presence of a slot value in an utterance is rep-
resented in the label matrix with a ‘1’ and its absence with a ‘0’.

Through the factorization of the composite matrix con-
structed by vertical concatenation of Vg and Va, NMF discov-
ers latent slot value representations in each column of Wa. The
columns of Wg link the learned acoustic patterns in columns of
Wa to the slot values represented by the rows of Vg . Further-
more, some extra columns of Wa and Wg are used to represent
filler words (words which are present in the utterance but are not
related to any slot value). The columns of H matrix indicate
which columns of Wa and Wg are combined to reconstruct
Va and Vg respectively. The learned acoustic patterns in Wa

and labeling information in Wg as given in Eq. 2 will be used
in the testing phase to detect the learned acoustic units within
unseen test utterances.

»
Vg

Va

–
≈

»
Wg

Wa

–
H (2)

2.4.2. NMF in the usage phase

The learned NMF model is applied in two different approaches
to decoding. Both decoders apply the learned NMF model to
word-sized segments of speech in a sliding window analysis.
A sliding window of a width of 300 ms and a shift of 100 ms
is used to produce an augmented HAC vector at 100 ms inter-
vals across an utterance. As a result, an utterance is represented
by a matrix Vs, containing one column per window position.
By employing the NMF factorization Eq. 3, which is called the
local NMF, the corresponding slot value activations are calcu-
lated.

Hs = arg min
Hs

DKL(Vs||WaHs) (3)

This is followed by the calculation of the activation matrix
As. Each column of the activation matrix contains labeling in-
formation of all slot values for a particular window position.

As = WgHs (4)

In the simplest form of decoding, called NMF decoding, the
slot values are inferred directly from the local (sliding window)
NMF. The activations for all slot values are accumulated over
all window positions, i.e. over the complete utterance. Since
each slot can have at most one value assigned, only the value
hypothesis with the largest accumulated activation is kept
per slot. The slot value is considered to be detected, only if
the accumulated activation exceeds a threshold. The order in
which the acoustic patterns related to the slot values occur in
the utterance is therefore ignored. Since this procedure may
result in multiple possible frames, we select the frame with the
highest average probability mass.

In a refinement, called HMM decoding, the local NMF
model generates a data stream which is modeled by an HMM.
The HMM captures the relation between word usage – includ-
ing word order – and frame descriptions of actions. Since the
HMM models the sequential aspects of the utterance (such as
word order), we consider the learning of this HMM a form of
grammar induction. The details of this approach are explained
in the next section.

2.5. Grammar induction

Identical or similar words (e.g. numbers) may refer to different
slots, so slot-value pairs can only be assigned correctly from
spoken input if grammar is taken into account. HMM decod-
ing fixes the major shortcoming of NMF decoding, i.e. that the
order in which slot values occur, is ignored. The local NMF
stream is then modeled by an HMM, which is learned from the
user interaction examples.

2.5.1. HMM learning

The activation sequence is modeled by a multi-labeling
HMM [9]. Like in discrete-density HMMs, each state q is
characterized by probabilities bj(q) over observations j. In this
framework, the observation is characterized by a probability
distribution derived from NMF atom activations, obtained as
Hs, normalized to sum to unity. The state probability is then
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the inner product of this distribution with the state distribution.

Applied to this problem, each semantic frame is modeled
by an HMM in which each slot value is assigned an HMM state
referred to as slot value state. States are fully connected, with
two exceptions. First, within slot transitions are prohibited,
since each slot needs to be assigned only one value. Second,
states can only transition to slot-value states within the
same semantic frame, since each spoken command can only
correspond to a single semantic frame. To limit the number
of transition probabilities to be estimated, all transitions from
states associated with a particular slot, to all states associated
with another slot, share the same transition probability. The
HMM will hence learn the sequence of slots in the user’s
utterances, but not the sequence of individual words. All the
states can be initial or final states.

HMM training is done using the Baum-Welch algorithm
[27]. Supervision information provided by the labeling matrix
Vg , is used to only assign non-zero state posteriors to slot val-
ues that are present in the frame description of an utterance. All
non-zero entries of the state-transition matrix are initialised to
(properly normalised) random values. The emission matrix is
initialised by Wg .

2.5.2. HMM decoding

During decoding, the maximum likelihood state sequence is ob-
tained using the Viterbi algorithm for the given observation se-
quence Hs. Visiting a state in an HMM corresponding to a se-
mantic frame implies the corresponding slot value is detected.
Since states representing slot values can only transition to states
within the same semantic frame, the Viterbi search implicitly
selects the most likely frame.

3. Experimental Setup
In this section, we give a description of the databases used for
evaluation, the evaluation procedure and metrics.

3.1. Databases

3.1.1. PATCOR

The database PATCOR contains recordings of subjects playing
a card game called “Patience” using spoken commands. The
database contains 8 speakers with in total more than two thou-
sand commands. The data was collected from unimpaired sub-
jects with non-pathological speech, speaking Belgian Dutch.
The users were free to choose their vocabulary and grammar,
although in practice the vocabulary was limited indirectly by
the number of cards, card positions and functionality.

A typical utterance in PATCOR is “Put the four of clubs on
the five of hearts”. In this type of utterance, the order of the

Table 1: parameters of the speech databases

Database PATCOR DOMOTICA

number of speakers 8 20
number of frames 2 4
number of slots 9 7

number of slot values 58 27
number of blocks 8 6
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Figure 2: Speech intelligibility measurements of the speak-
ers in DOMOTICA-2. The speakers are order by intelligibility
score. Generally speaking, a score higher than 85% is non-
pathological (see the dashed line).

words plays a key role in discovering the utterance’s meaning.
The gold-standard frame descriptions of the utterances were
created manually. In Table 1 an overview of the total number
of frames, slots and slot values used is given. Since not all pos-
sible slot values occur for all speakers, Table 7 gives the actual
number of slot values for each speaker. For a more detailed de-
scription of the frame descriptions that were used, as well as
the slot values used for each speaker, we refer the reader to the
technical report [28].

3.1.2. DOMOTICA-2

The DOMOTICA-2 database contains recordings of impaired,
dysarthric speakers controlling a home automation system. A
typical DOMOTICA-2 utterance would look like “Turn on the
kitchen light”.

Since collecting a large number of realistic, spontaneous
spoken commands is difficult due to the targeted users getting
tired quickly, a two-phase data collection method was used. In
the first phase, 9 users were asked to control 31 different appli-
ances in a 3D environment [28], guided by a visualised scenario
in order to ensure an unbiased choice of words and grammar. In
the second phase, these command lists were read back repeat-
edly by 21 test users. Of these 21, 8 speakers were selected
based on their increased risk for degenerate voice rather than
currently having a pathological voice.

For all speakers, speech intelligibility scores were obtained
by analysing their recorded speech using an automated tool
[29]. These scores are shown in Fig. 2. Table 1 gives an
overview of the total number of frames, slots and slot values.
For some speakers some slot values were not used, since some
commands were not spoken enough times to allow a meaning-
ful evaluation; Table 7 gives the actual number of slot values for
each speaker. For a more detailed description of the slot values
used for each speaker we refer the reader to the technical report
[28].

3.2. Methodology

The goal of the experiments is to evaluate the performance as
a function of the amount of training data used. However, since
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this means the amount of training data can be very small, a form
of cross validation is needed to obtain statistically meaningful
scores.

First, we divide the spoken commands (utterances) of each
speaker into equal or nearly equal parts called blocks. The k
blocks are created by minimising the Jensen-Shannon diver-
gence (JSD) between the slot value distributions of all blocks.
This optimisation is performed in an iterative process starting by
dividing all utterances randomly into k blocks and then swap-
ping at each iteration those two utterances that minimise the
JSD the most from one block to the other one. The process stops
when the JSD is minimised, i.e. when there are no swaps left
that can lower the JSD. The slot values are then approximately
evenly distributed throughout the blocks. Under the constraint
that each slot value should occur at least once in each block,
some slot values are excluded from the frame structure, mean-
ing that the spoken words corresponding to these slot values,
become filler words: they are not supervised and they are not
scored anymore. Such adaptation to the supervision is speaker
dependent and the number of slot values used for each speaker
can be found in [28]. Utterances without any slot values were
removed from the training and test sets.

To evaluate the learning speed of our framework, we cre-
ated a k × k latin square in which each block occurs exactly
once in each row and in each column. We selected five rows of
the latin square to create a five-fold cross-validation experiment
in which the train and test sets respectively increase and de-
crease in size. In each fold, we start with an experiment where
only one block is used for training while the remaining k − 1
blocks are used for testing. We incrementally increase the num-
ber of blocks n used for training in the subsequent experiments
and the last experiment will be performed with n = k−1 train-
ing blocks and one test block. Throughout the folds, the train
and test sets are always composed of different blocks allowing
for a more reliable scoring.

3.3. Parameters

The number of frames needed to have a reliable estimation of
the cluster centres, depends on the dimensionality of the fea-
ture vectors. The minimum number of frames used for adaptive
codebook training is chosen to be 78, two times the dimension-
ality of the MFCC feature vectors. For PATCOR, the resulting
VQ codebook sizes typically ranged from 40 for the smallest
training set to 145 for the largest training set. For DOMOTICA-
2, the resulting codebook sizes typically ranged from 36 for the
smallest training set to 118 for the largest training set.

For both databases, phone posteriorgrams were obtained us-
ing a free phone recognizer using a unigram language model.
The phone recognizer was trained on a dataset containing
recordings of selected radio and television news broadcasts in
the same language as the collected databases. Phones are mod-
eled with 3-state HMMs and in total 48845 tied Gaussians are
used in the acoustic model. The phonetic alphabet includes one
noise unit and one silence unit in addition to 48 phones.

For the utterance-based HAC representations, from both
VQ and phone posteriorgrams, only the top-three largest indices
at each time frame were retained.

3.4. Evaluation

For each utterance in the databases, we have a manually con-
structed gold standard frame description, which is used as a
reference for system evaluation. In this reference frame de-
scription, the slot values that are expressed in the utterance, are

filled in. The system was evaluated by comparing the automati-
cally induced frame descriptions to the gold standard reference
frames. The used metric is the slot Fβ=1-score, which is the
harmonic mean of the slot precision and the slot recall. These
metrics are commonly used for the evaluation of frame-based
systems for spoken language understanding [15]. The follow-
ing formulas were used for calculation:

slot precision =
# correctly filled slots

# total filled slots in induced frame
(5)

slot recall =
# correctly filled slots

# total filled slots in reference frame
(6)

slot Fβ=1-score = 2 · slot precision · slot recall
slot precision + slot recall

(7)

This means that only slots that are filled with a correct value
are rewarded, and both slots that are falsely filled and slots that
are falsely left empty are penalised. When an induced frame
is of another type than the corresponding reference frame, the
filled slots in the induced frame and in the reference frame are
consequently different, which automatically results in a rela-
tively large drop in the slot F-score. It should be noted that the
reported F-scores aggregate slot counts over all five folds.

4. Results
In Fig. 3, F-scores for eight speakers per database are depicted
as a function of the average number of utterances in the train-
ing set. The F-scores against increasing train set sizes provides
some insight into the self-learning aspect of the framework. For
each database, there are two graphs, one graph depicting NMF
learning of slot value representations and one graph depicting
HMM-based grammar induction.

For visibility, Fig. 3 does not contain all speakers from
DOMOTICA-2. For this dataset, all F-scores for the NMF-based
word finding module are presented in Table 2 and all scores
for the HMM-based grammar induction module are presented
in Table 3. There is one column for each speaker and the rows
indicate the number of blocks in the training sets.

4.1. PATCOR

When we compare the respective F-scores for each speaker and
for each training set size, we find a significant difference be-
tween the scores of the word finding module and the grammar
induction module using a paired student’s t-test, t(55) = 5, 11,
p < 0.001. On average, the grammar induction module im-
proves the F-score with 5%, but the improvement varies be-
tween speakers. For some speakers, the induced grammar pro-
vides a considerable improvement, for instance for speaker 3,
The improvement is 16% on average, t(6) = 33, 16, p <
0.001. However, for instance, for speaker 5, we don’t find a
substantial improvement using the grammar induction module.
In any case, using grammar induction does not seem to degrade
the performance for any user in PATCOR.
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Figure 3: The F-scores per speaker against the averaged number of utterances in the respective training sets. In Panel (a), the NMF-
based results of the word finding module for the PATCOR database are depicted. In Panel (b), the results of the word finding module
augmented with the HMM-based grammar induction tool are displayed. Panel (c) and Panel (d) display the same results as Panel (a)
and Panel (b), respectively, for eight selected speakers in the DOMOTICA-2 database.

Table 2: F-scores for NMF word learning for all speakers of DOMOTICA-2 and all training set sizes

speaker 11 17 28 29 30 31 32 33 34 35 37 40 41 42 43 44 45 46 47 48
1 block 0.56 0.55 0.30 0.32 0.27 0.22 0.22 0.27 0.46 0.25 0.24 0.36 0.35 0.28 0.34 0.31 0.38 0.16 0.17 0.36
2 blocks 0.67 0.65 0.36 0.37 0.32 0.31 0.26 0.31 0.64 0.27 0.30 0.44 0.51 0.29 0.37 0.46 0.48 0.16 0.17 0.29
3 blocks 0.72 0.68 0.41 0.44 0.40 0.37 0.33 0.32 0.71 0.28 0.36 0.50 0.60 0.32 0.39 0.53 0.48 0.20 0.15 0.33
4 blocks 0.79 0.70 0.50 0.41 0.41 0.36 0.32 0.32 0.81 0.29 0.36 0.48 0.61 0.41 0.38 0.61 0.51 0.17 0.14 0.29
5 blocks 0.79 0.74 0.48 0.45 0.43 0.38 0.38 0.40 0.88 0.31 0.44 0.53 0.64 0.45 0.44 0.63 0.46 0.22 0.13 0.26

Table 3: F-scores for HMM grammar induction for all speakers of DOMOTICA-2 and all training set sizes

speaker 11 17 28 29 30 31 32 33 34 35 37 40 41 42 43 44 45 46 47 48
1 block 0.67 0.42 0.32 0.34 0.26 0.32 0.21 0.18 0.54 0.24 0.27 0.33 0.35 0.21 0.32 0.43 0.42 0.20 0.18 0.40
2 blocks 0.73 0.54 0.36 0.44 0.36 0.43 0.24 0.31 0.69 0.30 0.28 0.45 0.47 0.26 0.44 0.55 0.45 0.23 0.19 0.46
3 blocks 0.78 0.60 0.43 0.45 0.46 0.46 0.25 0.29 0.77 0.26 0.45 0.58 0.55 0.33 0.41 0.58 0.46 0.25 0.16 0.48
4 blocks 0.82 0.66 0.49 0.41 0.50 0.52 0.31 0.32 0.83 0.29 0.37 0.59 0.57 0.31 0.32 0.66 0.51 0.22 0.19 0.58
5 blocks 0.82 0.71 0.48 0.50 0.43 0.58 0.29 0.35 0.87 0.31 0.50 0.60 0.61 0.28 0.59 0.70 0.46 0.24 0.19 0.61
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Results are in the same range as the reported word finding
results in [25], however, there are some speaker dependent dif-
ferences in performance due to different experimental settings.
The major discrepancies in settings are scoring and grammar
discovery. While we report F-scores and investigate automat-
ically induced grammar structures in this study, slot value re-
call scores are reported in [25] and frame decoding is guided
by a handcrafted grammar. Additionally, the feature represen-
tations are also different between the two studies. While we
combine phone posteriorgrams and adaptive softVQ for build-
ing the acoustic feature representations, the feature representa-
tion is based on softVQ using more larger codebooks in [25].

4.2. Domotica-2

For DOMOTICA-2, we find a small but significant improvement
using a paired student’s t-test when comparing the F-scores
between the word finding module and the grammar induction
module for each speaker and training set size (see Fig. 3c and
Fig. 3d), t(99) = 3, 24, p < 0.01. On average the gram-
mar induction module cause an increase in F-scores of about
3%. For some speakers, the F-score improvements were more
pronounced than for others. For instance, F-scores for speaker
31 improved on average with a decimal of 0.14, t(4) = 7, 6,
p < 0.05 while the F-scores for speaker 17 decreased with 8%,
t(4) = −3.77, p < 0.05.

The differences between speakers is related to the intelligi-
bility scores. We found a significant Kandall’s tau rank correla-
tion equal to 0.41, p < 0.05 for the average F-score per speaker
and their respective intelligibility score. There are trend lines
in Fig. 3c and Fig. 3d that are rather short because the amount
of data was limited, such as the graphs for speaker 35, resulting
from early fatigue for some speakers in the recording phase of
the DOMOTICA-2 corpus.

5. Discussion
In the word finding module, we aim to find the acoustic repre-
sentation of the words corresponding to slot values in a semantic
frame. In the grammar induction tool, the temporal structure in
the commands is discovered and related to the semantic frame
structure of the spoken commands. Positive scores necessitate a
positive evaluation on both aspects, that is the correct recogni-
tion of the spoken words and the correct allocation of the recog-
nised words to the slots in the semantic frame structure. The
second aspect is not a trivial issue for the utterances used in the
PATCOR database. For instance, in the utterance “Put the four
of clubs on the five of hearts”, words like “four” and “clubs” are
related to the moving card while the same words are sometimes
used to define the destination of the move. Some speakers spec-
ify the moving card first while others may specify the destina-
tion card first. Although spoken words are sometimes identical,
different slot value labels specify different meanings. It can be
seen in Fig 3b that the VUI gradually succeeds to distinguish
these slots corresponding to the moved card and the destina-
tion card for at least some speakers, such as speaker 2, 5 and 8.
Scores above 0.5 are only possible when the correct slots are
recognized, such as the slots related to the moving card versus
the slots related to the destination card in PATCOR.

The NMF-based word finding module is able to learn more
than words, as some context information of the words is incor-
porated in the slot value representations. The features used in
NMF learning consist of the co-occurrence of acoustic events
over multiple delays, up to τ = 200 ms, allowing for learning

context over spoken word boundaries. Moreover, the learned
context of a word also involves the co-occurrence of acous-
tic events with the frame slot events of the demonstrated com-
mands. The learned context is helpful in identifying the words
but also the frame slots for some speakers as can be seen in
Fig 3a and Fig 3c. However, context learning in NMF over word
boundaries is only possible in a local time context because co-
occurrence of acoustic events over longer time delays are more
divergent. Useful time delays might be extended by using prob-
abilistic time delays instead of fixed ones used here. The use of
longer time delays in learning the co-occurrence of events poses
a challenge for future research.

Although the frame structure is acquired for some speakers
without using the grammar induction module, not all speakers
display good scores without grammar induction, such as speak-
ers 3, 6 and 7 in PATCOR. The HMM-based grammar induc-
tion tool improves the learning of the frame structure, espe-
cially for those speakers for which the NMF word finding mod-
ule demonstrates insufficiencies. The results demonstrated in
Fig. 3 and Table 3 are encouraging in the sense that the graphs
of all speakers in Fig. 3 tend to rise by increasing training set
sizes, demonstrating the self-learning ability of the investigated
framework. Further directions of research includes the accel-
eration of the learning plots for normal and dysarthric speech.
Accelerating the speed of learning is especially important for
speech-impaired users, because they have to make more effort
to utter commands and train the system. Besides accelerating
the speed of learning, it remains an open issue at which level
the scores tend to level off. Obviously, all scores presented in
the graphs of Fig. 3b and Fig. 3d are not at levelling off for
the largest training set, as the training data is too scarce for the
self learning VUI to reach maximal performance. More data
is needed to find out the maximal performance of the system
and the relation between maximal scores and intelligibility of
the users. We could help this issue by gathering more data or
by sharing the emission probabilities for particular slot values
sharing identical words similar to the sharing of the transition
probabilities explained in Section 2.5.1.

There are some differences in performance between
databases. Our framework performs best for intelligible
speech. The speakers with higher F-scores for the DOMOTICA-
2 database are the speakers with the higher intelligibility scores
close to 85%. The performance of our framework for differ-
ent speakers in DOMOTICA-2 demonstrates a larger variability
and more spurious trajectories in Fig.3d than for normal speak-
ers in PATCOR. Low scores are corresponding to a low number
of slot values which in turn is corresponding to a limited num-
ber of recorded utterances due to early fatigue. However, the
scores between the two databases are difficult to compare since
the complexities of the categorical decisions are different from
each other. For instance, there are more frame slot values per
slot in PATCOR than in DOMOTICA-2 and there is more hier-
archical structure in the PATCOR-commands compared to the
DOMOTICA-2-commands, making the recognition of PATCOR-
commands much more difficult. In future research, we will
evaluate our framework on more databases allowing us to com-
pare the strengths and weaknesses of our system with other
small-vocabulary, speaker-dependent systems, such as those de-
scribed in [2, 6].

6. Conclusion
In this work we described research aimed at developing an as-
sistive vocal interface for people with a speech impairment.
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In contrast to existing approaches, the vocal interface is self-
learning which means it is maximally adapted to the end-user
and can be used with any language, dialect, vocabulary and
grammar. We proposed a novel grammar induction technique,
based on weakly supervised HMM learning, and we evaluated
early implementations of these vocabulary and grammar learn-
ing components on two datasets: recorded sessions of a vo-
cally guided card game by non-impaired speakers, and speech-
impaired users engaging in a home automation task.

While the performance varied widely between speakers,
both for impaired and non-impaired speakers, performance did
improve even with relatively small amounts of additional train-
ing data. This demonstrates the potential of the self-learning
vocal interface. Additionally, the proposed HMM approach to
weakly supervised grammar induction did improve the results
for all but a few speakers, indicating that a limited form of gram-
mar induction is not only feasible, but also beneficial to distin-
guish between commands. Future work will focus not only on a
detailed analysis of the obtained results, such as the grammars
that were inferred and the relation between speech pathology
and performance, but also on improvements such as more ad-
vanced acoustic modelling techniques, hierarchical approaches
of HMM learning, and integrating grammar induction and vo-
cabulary acquisition in a single probabilistic framework.

7. Appendix

Table 4: number of slot values and maximum codebook size
PATCOR

speaker number of maximum
id slot values codebook size
1 29 117
2 37 145
3 23 152
4 27 78
5 25 151
6 18 189
7 27 165
8 19 142

DOMOTICA-2
speaker number of maximum

id slot values codebook size
11 22 149
17 18 81
28 18 115
29 9 138
30 14 94
31 12 52
32 17 200
33 11 93
34 6 59
35 13 187
37 13 94
40 18 126
41 18 169
42 17 87
43 4 62
44 18 78
45 3 63
46 19 164
47 17 135
48 5 79
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Abstract 
The paper presents the concept and realization of the 
intelligent audio-book reader for the visually impaired. The 
system is capable of presenting personalities of different 
characters. The synthesizer mimics the way how a puppeteer 
portrays different characters. A traditional puppeteer generally 
uses up to a dozen different marionettes in one piece. Each of 
them impersonates a character with its own typical voice 
manifestation. We studied the techniques the puppeteer uses to 
change his voice and the acoustical correlates of these 
changes. The results are used to predict appropriate settings of 
the parameters of the voice for every character of the piece. 
The information on the personality features of every particular 
character is inserted manually by a human operator. Similarly 
to the puppeteer’s show only one speaker’s voice is used in 
this concept and all the modifications are made using speech 
synthesis methods. 

Index Terms: audio-book, speech synthesis, personality 

1. Audio-books for the blind in Slovakia 
The first audio-book in Slovakia was published 50 years ago. 
The first studio specialized to audio-book recording was 
founded in 1962 and the first four audio-books were 
published. The Slovak Library for the Blind – SLB (Slovenská 
knižnica pre nevidiacich Mateja Hrebendu v Levoči) has now 
about 37 thousands of library units, from which about 5 000 
are audio-books. These books have been read by professional 
actors - readers. Some of these readers are working for SLB 
for more than 30 years and some have recorded more than 865 
titles [1]. 

2. Text-to-speech reading eBooks 
Reading the book by an actor is time consuming and costly. It   
takes about two weeks for a professional audio-book narrator 
to record a novel of a length of about 85.000 words. To fully 
produce it takes another 2-3 weeks. [2] Moreover the actors 
and recording studio are not always available. Therefore, the 
authors of this paper started to cooperate with the SLB library 
in order to make much more books available – via reading by 
advanced expressive speech synthesis system. 

Text-to-speech (TTS) uses speech synthesizer to read out 
the given text. TTS in English and some other languages is 
built into the Windows and Macintosh computer operating 
systems, phones, tablets and other devices. (The choice of 
synthetic voices for Slovak was very limited until recently, 
and there was practically only one producer of professional 
quality Slovak speech synthesizers in Slovakia – The Institute 
of Informatics of the Slovak Academy of Sciences.) 

The main advantages of eBooks with text to speech over 
performed audio books is the availability, ease of access and 
new titles becoming available much quicker. [3] 

Several authors have checked the possibilities of 
expressive speech synthesis for storytelling (e.g. [4] [5]). So 
did the authors in this study, but their aim was to design a 
system capable of creating a unique voice for each character. 

The Slovak Library for the Blind has made first two 
synthesized audio-books available for informal evaluation on 
their web site and presented them also on the international 
conference Accessibility of audiovisual works to visually 
impaired people.[6] Two versions were published - one 
synthesized by unit selection synthesizer Kempelen 2.1 [7] and 
the second one by statistical parametric synthesizer Kempelen 
3.0 [8]. As it was referred in [6] it can be seen from the e-mail 
reactions of the visually impaired that the quality of both 
synthesizers was assessed as acceptable with a slight favoring 
of the unit selection synthesizer. This one was rated as a voice 
that sometimes sounds almost indistinguishable from human. 

The problem with synthesized speech is that it has smaller 
variability than the natural speech and it becomes tedious after 
a short while. Therefore the authors decided to prepare and 
verify a new concept of semi-automatic synthetic audio-books 
generation, a concept that they called DRAPER - the virtual 
dramatic piece reader. The idea is that the synthetic or virtual 
reader should not only read the text of the dramatic piece, but 
that it should change its voice according to the character being 
depicted. This concept stems from the former research on the 
presentation of the personality of the dramatic characters by 
puppeteers.[9][10] The authors think that the approach of 
deriving all the synthetic voices from the original voice of one 
voice-talent has an advance to fulfill the requirement of 
consistency of chosen voices for audio-book reading, that: “ 
… the voice for each character has to not only be distinctive 
and appropriate for the character in isolation, but it must also 
make sense in an ensemble of various characters.” [11]. 

A traditional Slovak puppeteer generally used up to a 
dozen different marionettes in one piece. Each of them 
impersonated a character with its own typical voice 
manifestation. The authors have therefore studied the 
techniques used by the puppeteers to change their voice and 
the acoustical correlates of these changes. The prototypical 
characters (archetypes) were identified. The psychological and 
aesthetic aspects of their personalities were studied and 
acoustic-phonetic means of their vocal presentation by the 
actor were identified [10]. 

3. Speech synthesizers 
The modern speech synthesis system development is 
dependent on speech databases that serve as a source of 
synthesis units or a source of data needed to train the models. 
In the current work we use some of our earlier results, such as 
neutral speech database [12] and unit-selection synthesizer [7]. 
On the other hand the expressive databases and expressive 
HTK voices belong to the most recent results of our research.  
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3.1. Speech databases 

The set of speech databases containing the voice of our voice 
talent consists of: 

1. Neutral database (Level 0) – 2000 sentences 
2. Expressive speech database with higher levels of 

voice effort 
a. Base level (Level 1) – 300 sentences 
b. Increased level (Level 2) -300 sentences 
c. Highly increased level (Level 3) - 300 

sentences 
3. Expressive speech database with lower levels of 

vocal effort 
a. Base level (Level -1) - 150 sentences 
b. decreased level (Level -2) 150 sentences 
c. Highly decreased level (Level -3) 150 

sentences 
4. Whispered speech database - 150 sentences 

The Neutral database, VoiceDat-SK, serves for creating 
the neutral voice with good coverage of synthesis elements.  

The method of development of smaller expressive 
databases that serve for adaptation to voices with higher and 
lower expressive load (limited to the dimension of emphasis 
and insistence) was published in [13]. One of the features that 
are known to be correlated with the level of arousal and vocal 
effort is the average F0. Figure 1 shows the histograms of F0 
for our three databases with one reference-neutral and two 
increased levels of vocal effort. Histograms of F0 for the 
expressive databases with one reference-neutral and two lower 
levels of arousal are presented in Figure 2.  

A Gaussian approximation is added to each of the 
histograms. 

Figure 1: Histograms of F0 for the three databases with 
increased vocal effort (from left to right: Level 1, 2, 3). 

In the databases with increasing expressive load the 
second and third levels of expressivity are clearly 
distinguishable from the base (reference) level 1. In addition to 
the neutral voice it is therefore possible to train two more 
significantly different expressive voices - one with higher and 
the second one with very high emphasis and insistence. 

Figure 2: Histograms of F0 for the three databases with 
decreased vocal effort (from left to right: Level -3, -2, -1). 

In the databases with decreasing expressive load it was 
very hard for the speaker to make the second and third levels 
distinguishable one from another. The differences in vocal 
intensity and timbre were small and the average F0 was nearly 
the same for these two databases (level -2 and -3 of expressive 
load – soothing and very soothing speech). This was probably 
due to a physiological limit - the lowest frequency of 
oscillation of the glottal chords. We therefore decided to train 
only one voice with low expressive load. So we at last came to 
the choice of speech modes which is identical to the modes 
examined by Zhang and Hansen from the point of view of 
vocal effort in their work on classification of speech modes 
[14] (i.e.: whispered, soft, neutral, loud and shouted in 
Zhang’s description). 

A special database of whispered voice was created by the 
same speaker whispering the same set of 150 phonetically rich 
sentences as was used in the preceding expressive databases. 
As it turned out this volume was sufficient to achieve a good 
quality of synthesized whisper by direct training the HMM 
voice on this database, without using the neutral voice and 
adaptation. This is probably due to the absence of voiced parts, 
which are critical in HMM synthesis because of the problems 
with pitch tracking. In contrast to voiced parts of the other 
HMM voices the vocoder buzz is nearly unobservable in the 
synthesized whisper. 

3.2. Synthesizer voices 

The authors have several types of synthesizers available 
derived from the voice of the same voice talent [15]. Two of 
the used synthesis methods provide sufficient quality for the 
audio-books reading – the Unit-selection [16] and Statistical-
parametric synthesis [17]. 

Kempelen 2.0 unit-selection synthesizer utilizes the 
Neutral database with a CART [18] [19] prosody model 
consisting of F0 model and segmental lengths model. It offers 
possibilities to change average F0 (AvgF0), to linearly change 
average speech rate (AvgSr) and to change the depth of 
application of the prosody model (PDepth). Figure 3 shows the 
interface for setting these parameters and checking the 
resulting voice. 
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Figure 3: The graphical interface of the unit selection 
synthesizer: a) text, b) prosody model selection, c) 
sliders for setting the AvgF0, AvgSr and PDepth, d) 
needed phonemes e) best syllable candidates found in 
the database from which the utterance is 
concatenated. 

Only neutral voice Unit-selection is available in the actual 
version of DRAPER as the volume of expressive databases is 
too small to create good quality expressive Unit-selection 
voices from them. However certain changes in expression and 
fitting the voice to different characters can be obtained by 
changes in average pitch, average speech rate and the weight 
of prosody model, which influences the depth of the prosody 
modulation. The last one can change the intonation from 
monotonous to exaggerative intonation obtained by 
extrapolation of the model values up to 200%. 

Other voices are based on Statistic-parametric speech 
synthesis [17]. We created the neutral voice in the HTS [20] 
system and adopted it to three other voices using smaller 
expressive databases. The statistical parametric synthesis uses 
Hidden Markov Modeling, and therefore this method is often 
denoted as HMM synthesis. 

The brand name of our synthesizers is Kempelen. The full 
set of synthesizer voices available in the current version of 
DRAPER is the following: 

• Kempelen 2.1 neutral Unit-selection voice 

• Kempelen 3.0 neutral HMM voice 

• Kempelen 3.1 HMM voice with higher expressive load 

• Kempelen 3.2 HMM voice with very high expressive 
load  

• Kempelen 3.3 HMM voice with lower expressive load 

• Kempelen 3.4 HMM whispering voice 

4. Personality and voice 
In this chapter we shortly introduce our previous research on 
the relationship between personality and voice. 

 

4.1. Individuality and its components / the notion of 
personality  

In our work, individuality is understood as a psychological 
entity, a unit consisting of three components [21]. First, 
personality, is a rather stable component that remains 
practically unchanged during the life. Second, mood, may 
change in time, but its changes are rather slow. Third, 
emotions, are the most dynamical and can change rapidly. In 
this paper we focus mainly on the first component, personality, 
and leave the other two components for subsequent studies. 

4.2. Traditional psychological classification of 
personality dimensions 

Personality is most commonly described using the formal 
psychological model called the Five Factor Model [22], [23] 
with factors representing the basis of the personality space. 
We have adopted a very simple annotation convention. Each 
of the personality dimensions - Neuroticism, Extraversion, 
Openness to experience, Agreeableness and Conscientiousness 
- will be assigned only one of three values: 1, 0 or -1. For 
instance, N1 denotes that the character is neurotic, N0 means 
that this dimension is not applicable, i.e. not important for 
expressing the character’s personality, and N-1 denotes the 
absence of neuroticism, i.e. that the character comes across as 
secure and confident, which is opposite to neurotic (see Table  
1.). 

4.3. Semantic dimension – taxonomy of characters 
based on elementary semantic oppositions 

Personal characteristic of the theatre characters is a complex of 
three interconnected levels: semantic, visual and acoustical. 
The semantic level characterizes the character as to its 
function in the play. The visual layer represents all 
components of visual representation of a puppet (face, 
costume, material and animation). The acoustical layer 
includes speech, music and all the sounds generated by actor 
and his puppets. 

The description of personalities encoded in the speech and 
acting of puppet characters requires at least a three 
dimensional space consisting of semantic, visual and auditory 
dimensions. In the semantic domain the character is best 
described following its functions in the play. Table 2 gives 
classification of functions of the characters (the concept) on 
the basis of elementary semantic oppositions, proposed by us 
for aesthetic and semantic description on of characters for the 
purposes of this study. 

The classification includes eight dimensions. Some of 
them are binary, e.g. Sex or Anthropological view, some are 
coarsely continuous, e.g. Social Status or Ethnicity, and some 
represent a fine-grained continuum, e.g. Age, Morality, or 
Intelligence. We will initially code all dimensions as binary 
since even Age, Morality, or Intelligence are considered 
archetypal and thus extremely polar for the purposes of the 
plays. 
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Table 1. Five Factor Model of personality with 
description and examples 

 

Table 2.  Classification of the characters based on 
several elementary semantic oppositions. 

Criteria One pole code Second pole code 

Sex Male XM Female  XF 

Anthropological view human HH Non-human  HN 

Age Old AO Young  AY 

Morality Positive MP Negative  MN 

Aesthetics Tragical ET Comical  EC 

Reflexion of ethnic Our RO Foreign  RF 

Intelligence Clever IH Stupid IL 

Social status Noble SN Low  SL 

 
For deeper understanding of the actor’s notion of personality 
of his characters, we asked a puppeteer, Anton Anderle, to 
characterize the personality and to explain the changes of his 
voice he uses to present them. The actor based the description 
on both psychological features of the character and the 
acoustic-phonetic means to express them.  

He presented us a set of archetypical characters and their 
typical features: 

I. NEGATIVE MALE TYPE - Intriguer, bad knight 

 - High volume, hyper-articulation 

II. POSITIVE MALE TYPE -Leading man - Royal type 
dignified, deliberate, wise - Low pitch, monotonous 

IV. BAD MAN - hoarse, low pitch 

V. SWAGGERER Convivial, bold farmer, folk type, 
straight man, unshuffling, not cunning, frank - Pharyngeal 
resonance, great pitch range 

VI. LEAD WOMAN - young, soft modal  

VII. OLD WOMAN – lower voice 

VIII. BAD OLD WOMAN Cunning, sarcastic - Increased 

hoarseness, articulator setting as for smile 

IX. GOOD OLD WOMAN - Low falsetto, medium pitch 
range 

This actor’s classification scheme in fact assigns 
personality features and semantic features to the acoustical 
features of the character’s voice. 

4.4. Voice quality and settings of the articulators 

A common way of describing voice settings uses the notion of 
a reference or neutral setting. This reference corresponds to a 
normal position relative to possible adjustments [24]. Discrete 
or continuous variation in voice settings is then depicted as 
deviations from the reference/neutral setting. 

Following the basic pattern outlined in Laver’s work [24], 
one can then attempt to classify voice qualities primarily in 
terms of description of the position of the articulators. For 
annotation we used a simple set of labels derived from Laver’s 
terminology e.g. Labial protrusion = LP, 
Laryngopharyngealized = LPH, Denasal = DN, Harsh 
whispery creaky falsetto = HWCF, etc. Laver´s classification 
scheme is considered to be carefully worked-out, and it is 
being used widely. Despite this, however, some speech 
qualities are not covered, e.g. smiling or weepy speech. In 
producing these types of speech, complex positioning of the 
articulators (wide high/top and wide and low/bottom mouth 
corner positioning) along with special phonation modes 
(vibrato etc.) are used, and these are not included in the 
scheme. Pathological phenomena occurring in spoken 
utterances, whether acted or natural, such as lisping, 
stammering, muttering are not included in the scheme either; 
we have added the PAT (Pathological) annotation mark for 
them.  

Considering prosodic features, we denote slow speech as 
SRL (Speech rate low), fast speech as SRH (Speech rate high), 
large pitch range as PRH (Pitch range high), small pitch range 
as PRL (Pitch range low), and low voice pitch is denoted as 
LOW.  

A complex feature covering both voice quality and 
prosody is vocal effort. We denote high vocal effort as VEH 
(Vocal effort high) and low vocal effort as VEL (Vocal effort 
low). 

4.5. Relationship between personalities and acoustic 
characteristics 

We have analyzed 24 voices (the actor’s own voice and 23 
characters) presented by a puppeteer and we summarize the 
results in Tables 3 and 4. The numbers representing the 
highest observed correlation are written in Bold and 
highlighted. These data can be used for a first analysis of 
mutual links among personality factors, semantic and 
articulatory-acoustic features. 

As expected, the 2D analysis performed on a relatively 
limited number of data – does not provide clear answers to the 
queries related to coding of personality characters by 
aesthetic-semantic and acoustic speech means. However, the 
results in Table 3 still suggest some dependencies. For 
example, negative moral features (MN) can be observed with 
neurotic (N1), extrovert (E1) and competitive (A-1) characters. 
Comical characters (EC) are often neurotic (N1). High social 
position (SH) is connected with calmness (N-1), extroversion 

Personality 
dimension   

Code 
value 

Description High level [1] 
(example 
adjectives) 

Low level  
[-1] 
(example 
adjectives) 

Neuroticism 
 

N      
1,0,-1 

Tendency to 
experience 
negative 
thoughts 

Sensitive 
Nervous 
Insecure 
Emotionally 
distressed 

Secure 
Confident 

Extraversion 
 

E         
1,0,-1 

Preference for 
and behaviour 
in social 
situations 

Outgoing 
Energetic 
Talkative  
Social 

Shy 
With-drawn 

Openness to 
experience 
 

O         
1,0,-1 

Open minded-
ness, interest in 
culture 

Inventive 
Curious 
Imaginative 
Creative 
Explorative 

Cautious 
Conserva-
tive 

Agree-
ableness 
 

A         
1,0,-1 

Interactions 
with others 

Friendly 
Compassio-
nate  
Trusting 
Cooperative 

Competitive 

Conscien- 
tiousness 
 

C         
1,0,-1 

Organized, 
persistent in 
achieving goals 

Efficient 
Methodical  
Well organized 
Dutiful 

Easy-going 
Careless 
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(E), openness to new impressions (O) and strong-mindedness 
(C). Similar personality characteristics also tend to correlate 
with wisdom (IH). Results in Table 4 suggest that actors use 
mostly pitch changes in their voice (LOW+F+CF=22.95%) to 
express diversity of characters. While female voices 
(F+CF=12.57% of the total of assigned acoustic marks) are 
naturally expressed by falsetto, low voices (LOW=10.38% 
acoustic marks) correlate robustly with the N-1 factor, i.e. with 
calm and self-assured nature, and obviously with orderliness 
and resolution (C1).  

Additionally, most often used acoustic means include 
speech rate (SRH+SRL=12.57%) and voice effort intensity 
(VEH+VEL=12.57%). High speech rate is usually related to 
neuroticism (N1), extroversion (E1), but also to 
competitiveness and assertiveness (A-1). On the other hand, 
slow speech (SRL) tends to be linked to reliability (C1). 
Considerable range of frequencies of the basic tone in melodic 
structures (PRH) and high voice effort (VEH), have also been 
used several times to express neurotic and extrovert nature. 
More data would be necessary for us to be able to evaluate the 
function of additional voice properties. 

5. Texts of dramatic pieces 
DRAPER is meant for reading pieces from various areas of 
dramatic art in future. However it is still under development 
and it was decided to prove the concept first on the set of 
traditional puppet plays. Therefore we use for our first 
experiments a collection of the texts of puppet shows covering 
most of the repertoire of the traditional folk Slovak puppeteer 
Bohuslav Anderle (father of Anton Anderle who presented the 
puppeteer art to us). The pieces were recorded by Bohuslav 
Anderle himself in nineteen-seventies and reconstructed, 
transcribed, edited and published recently by one of the 

authors of this study, Juraj Hamar [21]. The collection consists 
of 28 complete puppet plays. 

One could reasonably argue that there is no need to create 
synthesized versions of the games if there are recordings of the 
text spoken by the puppeteer. The sound quality of the original 
recordings is very low and is therefore not suitable for 
publication. On the other hand it can serve as a good study 
material and reference in evaluation of the quality of our first 
synthesized dramatizations. 

6. Dramatic Piece Reader DRAPER 
We have developed a software system for reading texts of 

dramatic works of art and called it “Dramatic Piece Reader -  

DRAPER”. It makes use of available set of synthesizers with 
different expressive load and with wide possibilities to change 
the characteristics of voices. The schematic diagram of 
DRAPER is shown in Figure 4. 

6.1. DRAPER architecture 

With a help of human expert, the Operator, who controls, 
checks and fine-tunes the text pre-processing and voice 
assignment, the system creates sound-files of dramatic pieces 
where every character have a special voice with default 
acoustical characteristics automatically predicted according to 
the simple Operator's description. Illustrative sounds can be 
added wherever it is appropriate (see the following chapter). 

After the operator has chosen the text of the dramatic piece 
to be read the automatic text preprocessing is done.  It 
automatically identifies the characters and shows the list of the 
characters to the operator. For every character the operator has 
to manually choose the type of every character (see Table 5).

Table 3.  Counts and mutual occurrences of personality dimensions and semantic characteristics. 

*** XM XF HH HN AO AY MP MN ET EC RO RF SH SL IH IL SUMA %

Neurotic 3 4 4 2 2 1 2 4 4 3 1 4 3 37 13,41
Confident 4 2 4 1 2 1 3 1 1 1 1 3 1 3 28 10,14
Extravert 7 2 7 1 3 2 4 3 2 2 2 5 2 42 15,22
With-drawn 2 1 3 1 1 1 2 1 1 3 1 17 6,159
Open 3 2 3 1 1 2 1 1 1 2 1 3 21 7,609
Conservative 2 2 4 1 1 3 1 2 1 1 3 21 7,609
Agreeable 5 4 5 3 2 1 5 2 2 1 2 3 3 2 40 14,49
Competitive 2 3 3 2 2 5 1 2 1 21 7,609
Conscientious 8 3 6 4 2 4 3 1 1 1 4 1 2 40 14,49
Careless 1 2 1 1 2 2 9 3,261
SUM 37 23 41 13 17 5 22 21 4 17 9 8 16 23 11 9 276 100

% 13,4 8,3 14,9 4,7 6,2 1,8 8,0 7,6 1,4 6,2 3,3 2,9 5,8 8,3 4,0 3,3 100 ***

Table 4.  Counts and mutual occurrences of personality dimensions and voice characteristics. 

*** PAT SRH SRL PRH PRL VEH VEL LOW WV F CF HV RL TV MV LV LS CR LP LL N BV DN SUMA %
Neurotic 3 4 2 3 3 1 2 1 2 2 23 12,57
Confident 3 2 2 5 1 2 1 2 2 1 2 1 24 13,11
Extravert 2 4 2 3 2 2 1 1 1 1 2 1 2 2 26 14,21
With-drawn 1 2 1 1 1 1 7 3,825
Open 1 1 2 2 1 1 2 10 5,464
Conservative 1 2 1 1 2 1 1 1 1 1 1 13 7,104
Agreeable 2 1 1 2 3 2 5 1 1 1 2 1 1 2 25 13,66
Competitive 3 1 3 1 2 1 1 2 1 15 8,197
Conscientious 3 1 2 2 1 5 1 3 1 2 1 1 2 2 2 1 3 1 34 18,58
Careless 2 2 2 6 3,279
SUM 9 13 10 8 6 13 10 19 2 20 3 7 5 5 5 6 10 6 3 7 6 6 4 183 100

% 4,9 7,1 5,5 4,4 3,3 7,1 5,5 10,4 1,1 10,9 1,6 3,8 2,7 2,7 2,7 3,3 5,5 3,3 1,6 3,8 3,3 3,3 2,2 100 ***
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Figure 4: Schematic diagram of the virtual Dramatic Piece Reader. 

The system then offers a default voice for every character. 
One arrow means a shift approximately 30 Hz in AvgF0, 15% 
in AvgSr and 30% in PDepth. The operator can then open the 
Synthesizer settings window, try the voice with the offered 
parameter setting and eventually fine-tune the settings for 
every particular voice. Fine-tuning of the voice can be done 
also for a smaller part of the text (e.g. whispering or crying 
only several words). 

The sentences ending with exclamation mark are 
automatically labeled with a tag causing they will be read with 
expressivity increased by one level (if available). 

One of the most important tasks of the operator is to check 
the text for the words with unusual pronunciation (e.g. names 
or foreign words) and use the find-replace function of the text 
editor to replace their written form for the text representation 
of their pronunciation in Slovak (“write it the way you hear 
it”). 

All the preparation of the text for synthesis is technically 
done by adding tags to the source text. The basic text to be 
processed is the pure text of the utterances of the characters 
and the text of director notes, descriptions of the stage and 
other comments. 

Special tags designating the changes of voices and voice 
parameters are automatically inserted at the appropriate places 
in the text under the control of Operator. 

6.2. A comment on speech temporal dynamics  

At various emotions, the same character can have different 
dynamics of speech. Sometimes he speaks quickly, sometimes 
slowly, but most often he speaks in a quasi neutral manner. 
This speed can be set in the Synthesizer settings. 

But this is only a so called linear (or horizontal) dynamics 
applied to the utterance of one character. It is followed (in a 
vertical direction downwards in the text) by an utterance of 
another character. The vertical dynamics reflects the dynamics 
of the dialogue, dynamics of taking the ground, of the speed of 
changing the characters. If they are speaking calmly, there is a 
“normal” more or less short pause between the utterances of 
the characters. However, if the dialogue is expressive 
(argument, hassle, fear, threats, etc..) the cadence of rotation of 
the characters in the dialogue is much faster, almost without 
pause. 

88



Table 5. The basic set of default voices that the 
Operator has available. 

Character 
archetype 

Characteristics Synt. 
Voice 

Avg 
F0 

AvgSr Pros. 
Depth 

Neutral 
male 

father, 
comment 
reader 

Unit-
sel. 
 

135 Hz 
= male 
refe-
rence 

standard 100% 

Leading 
man 

royal type Unit-
sel. 

� � � 

coy weak HMM 
level-2 

� � � 

bigmouth convivial, 
folksy 

HMM 
level+2 

� � � 

Negative 
male 

intriguer HMM 
level+2 

- -  
� 

Very bad 
man 

malicious HMM 
level+2 

�� � � 

Neutral 
female 

mother, 
comment 
reader 

Unit-
sel. 
 

240 Hz 
= 

female 
Refe-
rence 

standard 100% 

Leading 
woman 

royal type Unit-
sel. 

� � � 

Timid 
woman 

shy, un-
experienced 

HMM 
level-2 

� � � 

Jovial 
woman 

convivial, 
folksy 

HMM 
level+2 

� � � 

Negative 
female 

intriguer HMM 
level+2 

- -  
� 

Very bad 
woman 

malicious HMM 
level+2 

�� � � 

Ghost Whispering HMM 
whisper 

- - - 

Comment 
reader 

neutral to 
less expressive 

HMM 
level 0 

- - - 

 

Special marks can be inserted in the text in DRAPER to 
shorten or lengthen the pauses between replicas of two 
characters. 

7. Commentary reading and Illustrative 
sounds - Acousticons 

One voice has to be dedicated to the Commentary reader, 
which reads the comments of the theater script, e.g.: “He 
arrives on the scene; She  hits the robber with a stick; He falls  
to the ground; She catches Kuranto's hand; She hides behind 
the statue; There is a small cabin near the forest.; etc ...”. This 
voice should be neutral or with a slightly lower expressivity, 
but distinguishable from the voices of the characters. 

Some actions and phenomena mentioned in the text, for 
example knocking, ringing, strike, whistle, snoring etc... could 
be expressed in the acoustic form. Similarly there are different 
changes of voice qualities, mood, presence of emotions, or 
speaker non-lexical sounds identified in the text, e.g.: 
“tearfully, for himself, in a whisper, seriously, screams, angry 
...”. Finally, from time to time it is marked in the comment or 
it is obvious from the text itself, that the character sings the 
text as a song. Other situations, where the insertion of sounds 
can be suitable are interjections “Br, brrr” that are usually used 
when the devil comes. This is also often accompanied by a 
sound of thundering. 

To get an idea of what sounds and what kind of 
emotionally colored voices are required by the comments, we 
have analyzed several hundred pages of scenarios of puppet 
plays. 
The examples are from the collection of all 28 games. We list 
the sounds, emotions or voice modulations that we found in 
[25]. 

Sounds: knocking on the door (15 times) , ringing the bell 
(5 times), whizzing (2 times), striking clocks (4 times), 
whistling (6 times), snoring (2 times). 

Voices: angry (2 times), shouting (4 times), parodying (11 
times), crying (13 times), moaning, sobbing (15 times), to 
himself (13 times), whispering (9 times). 

We have therefore included a possibility in DRAPER to 
insert illustrative sounds in the synthesized speech. 

The 256 sounds (acoustic emoticons) are organized in a 
system of 16 thematically oriented subsets (Transporticons, 
Zooticons, Sporticons, Eroticons, Partycons, etc.) and are 
inserted using an easy to remember code. This set of sounds, 
called SOUNDI we have developed earlier for SMS to Voice 
service in telecommunications [26]. 

The Operator can decide which of the instructions 
(comments) should be read and which should be performed. 
Some of them can be done by changing the settings of voices 
and some by insertion of the illustrative sounds. 

The letter in the code designates the class and every sound 
in the class has its own number.  

The second way of inserting the sounds is to remember the 
names of the sound file, which is listed in the full definition of 
SOUNDI specification (e.g. kiss1 = E1, or gallop = S2). 

In further versions of DRAPER the SOUNDI sound 
database will be enriched and changed substantially including 
the possibility to use user defined sound samples.  

8. Conclusions and future work 
Expectations that speech synthesis will be widely used for 
reading text aloud by readers of electronic books failed to 
become truth. The reason is that the readers have greater 
experience from their own reading than listening to synthetic 
speech, which is often unnatural and is unable to credibly 
convey the personality of the characters, their moods and 
emotions. 

The possibilities of visually impaired readers are more 
limited. If the book is not available in Braille, or if their 
computer is not equipped with Braille display, they would 
probably like to use to the audio-books. Unfortunately, these 
are produced in quite a small amount. For this group of people 
we offer speech synthesis software, which is capable of 
presenting various characters and their personality.  

Similar activities of other researchers in this area [27] [28] 
indicate that this is a well-grounded approach that will 
hopefully bring even better effectiveness in producing 
naturally sounding audio-books in future. 

One of the goals of our research was to improve our 
understanding of the acoustic and auditory correlates of 
personality dimensions. We introduced a novel approach to the 
analysis of functional variation, i.e. the need to express 
personalities of particular characters, in the speech and vocal 
features of a puppeteer. 
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Table 6. The descriprtion of SOUNDI database of sound samples. 

Code Class Description Examples 

A1-A16 Acoustic 
emoticons  

sounds reflecting human 
feelings, moods and 
attitude to the text 

short giggling, laughter, devil laughter, Oooops..., Wow!, Yeees!, 
sad groan … 
Sounds suitable for acoustic interpretation of the graphical 
emoticons. 

B1 - B16 Babycons Acoustic displays of 
children 

children giggling, cry, etc. 
 

E1 - E16  Eroticons  Sounds of love, passion, 
sex,  yearning  

kisses, hard beating, sniff, screams, orgasm etc. 
 

V1 - V16 Vulgaricons  Indecent sounds, “dirty 
sounds” or sounds on the 
boundary of social 
acceptability 

Fart, belch, spittle, vomit, squelch, hiccup, snore… 
Whether You like it or not, these sounds belong to the most 
marketable. 

Z1 - Z16 Zooicons Acoustic displays of 
animals 

Roaster, dog, cat, horse, lion, hen, pig, goat, donkey, mouse, 
snake, gadfly… 

I1 - I16 Symbolicons  Illustrative and 
symbolical sounds 

Church bell, clocks, gun shot, circular saw, glass crack, doors, 
toilet, etc. 

T1 - T16 Transporticons Sounds of transport 
means and vehicles 

Human steps, horse gallop, car alarm, car crash, car brakes,  
locomotive, firemen car, ambulance, etc. 

P1 - P16 Partycons Sounds of party and 
having fun with friends 

Filling a glass with a drink, pinging with glasses, opening a bottle 
of vine, opening a bottle of champagne,  sipping, step dancing, 
Cheers, drunk singing, etc. 

S1 - S16 Sportikons  Sports Table tennis, tennis, judge’s whistle, gong, mountaineer falling 
from a rock, stadium atmosphere, etc. 

J1 - J16 Instrumenticons Jingles or sounds played 
by musical instruments 

Jaw harp, cymbal, church organ, drums, ethnic instruments, etc. 

M1-M16 Melodicons Fragments of the well 
known melodies with a 
symbolical meaning 
 

Jingle bells, Happy birthday, Wedding march, etc. 

 

We argued that the system of stylized personality 
expressions by a puppeteer provides an excellent source of 
information both for understanding cognitive aspects of social 
communicative signals in human-human interactions as well 
as for utilization of observed patterns of human behavior in 
applications based on interactive voice systems in human 
machine interactions. 

Most important feature of the DRAPER system is, that 
with a help of human operator it can convert high volume of 
books into audio form and make them accessible to the blind. 
The sound-files that will be distributed by the Slovak library 
for the blind in a form of copy protected files without a 
violation of the copyright law. 

We presented our virtual dramatic piece reader at the 
conference Accessibility of audiovisual works to the visually 
impaired - a means of social inclusion and awareness, 
Bratislava 2012, organized by Blind and Partially Sighted 
Union of Slovakia. The quality of the generated speech was 
evaluated as a surprisingly good and acceptable also for longer 
texts. 

At present DRAPER is still under development, but it is 
already capable of generating sound-files. The formal 
subjective evaluation tests have not been carried out yet, as we 
want to further improve our HMM voices through 
improvements in the vocoder. More work is still needed to 
make the system less dependent on human operator and to  

 

match the automatic text preprocessing to the requirements 
of this special task. 

Our further work will be aimed at adapting the Manual 
control interface so that it can be operated by a blind person. 
We also plan experiments with the development of over-
articulated highly expressive voice, as the intelligibility of the 
highest level of expressive speech synthesis is often a bit 
lower than needed. 

Regardless of how 'natural' text to speech can sound, it 
does not compare to the emotion and performance that an 
actor can bring to a performed audio book. [3] However the 
authors of this work try to take steps towards automatic 
reading of dramatic works in a quality acceptable for the blind 
and partially sighted people. 

Demo sound-files generated by DRAPER can be 
downloaded from http://speech.savba.sk /DRAPER. 
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Abstract
This paper presents a dialogue act classification for a spoken
dialogue system that delivers necessary information to elderly
subjects with mild dementia. Lexical features have been shown
to be effective for classification, but the automatic transcrip-
tion of spontaneous speech demands expensive language mod-
eling. Therefore, this paper proposes a classifier that does not
require language modeling and that uses sub-lexical features in-
stead of lexical features. This classifier operates on sequences
of phonemes obtained by a phoneme recognizer and exhaus-
tively analyzes the saliency of all possible sub-sequences using
a support vector machine with a string kernel. An empirical
study of a dialogue corpus containing elderly speech showed
that the sub-lexical classifier was robust against the poor mod-
eling of language and it performed better than a lexical classifier
that used hidden Markov models of words.
Index Terms: dialogue acts, support vector machines, string
kernels, spontaneous speech, elderly speech, dementia

1. Introduction
This paper presents an information support system for elderly
subjects with cognitive disabilities. The target users have diffi-
culties maintaining their attention and absorbing new informa-
tion, so this system tries to maintain conversations with them
to deliver information necessary for their independent and au-
tonomous life in a similar way to their caregivers. Thus, this
system needs to recognize colloquial speech and to understand
the intentions of utterances so that it can respond sufficiently
correctly to sustain conversations. The assignment of an utter-
ance with a predefined functional tag that represents the com-
municative intentions behind the utterance is referred to as di-
alogue acts (DAs) classification, which is considered to be a
useful first step in dialogue processing. This paper proposes a
DA classification method for the colloquial utterances made by
the elderly to facilitate the production of an appropriate correct
response.

Many studies of DA classification have shown that word n-
grams are effective features for determining DAs [1, 2, 3, 4].
To obtain the lexical feature, the automatic transcription of col-
loquial speech is required. However, some difficulties of the
speech recognition have been discussed in previous studies of
spontaneous speech recognition [5, 6]. Spontaneous speech in-
cludes disfluencies (e.g., filled pauses, repairs, hesitations, rep-
etitions, false starts, or partial words) [7], pronunciation varia-

tion [8, 9], and speaking rate variation [10, 9]. For the collo-
quial speech considered in this paper, its casual style of speech,
the speech characteristics of the elderly subjects and the noisy
room environment create additional difficulties in terms of the
acoustics and language modeling. Among these difficulties, this
paper focuses on the difficulty of language modeling.

As pointed out before in many studies, individuals differ not
only in their acoustics but also in their lexical patterns. The dif-
ference is particularly great in spontaneous speech, so speaker-
dependent language modeling has been considered a potential
approach to cope with the variation. For example, the quan-
tity of disfluencies varies depending on the speaker, so differ-
ent models of different classes of speakers are effective for re-
moving disfluencies [7]. Disfluency removal is useful because
disfluencies cause problems during subsequent higher-level nat-
ural language processing such as DA classification. Another
study [8, 9] showed that the lexical pattern used during lecture
speech is quite variable among speakers, so language model
adaptation to a specific speaker is effective for lecture speech
recognition. This can be achieved provided a relatively long
speech is available for each lecturer. Unfortunately, the cost of
speaker-dependent language modeling is prohibitive in our ap-
plication because it is difficult to obtain sufficient data to build
speaker-dependent language models.

The limitation of the lexicon itself has also been noted. Dur-
ing spontaneous speech, the actual pronunciation of a word can
vary greatly from its canonical pronunciation because of sloppy
pronunciation, word contractions, or co-articulation between
words. To address this variation, a previous study [11] pro-
posed a data-driven dictionary adaptation that adds new entries
for words that correspond to the actual pronunciations appear-
ing in given corpora that are obtained using a phoneme recog-
nizer. Another study [9, 12] also found that the use of multiple
surface forms for each word baseform is effective for reduc-
ing the word error rate during the recognition of spontaneous
Japanese speech. In the Japanese language, the different surface
forms can be represented as different words, which ensures that
they are faithful to the actual pronunciation. Thus, these words
can be included as different baseforms in a dictionary. The ex-
istence of different representations of a single morpheme can
have a harmful effect on DA classification, so it is necessary to
normalize the recognized text by replacing the different repre-
sentations with the corresponding baseform. Unfortunately, the
normalization process is not straightforward, unlike word stem-
ming.
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Elaborate language modeling is required to transcribe spon-
taneous speech faithfully but faithful transcription without nor-
malization is not necessarily useful for our immediate goal of
DA classification. To explore the utilization of lexical fea-
tures in a more cost-efficient manner, this paper proposes a sub-
lexical DA classifier that does not require language modeling
and that operates on the sequences of phonemes obtained us-
ing a phoneme recognizer. The central hypothesis of this study
is that if word n-grams are effective indicators for determining
DAs, then sub-sequences of phonemes, which are fragments of
words in a sense, should also be effective indicators. If this hy-
pothesis is true, then even when effective language modeling
is impossible and some salient words are misrecognized, it is
expected that their fragments should be preserved, so a more
robust form of DA classification based on fragments is possi-
ble. Furthermore, the use of phonemes facilitates the analysis
of the saliency of the fragments based on the actual pronunci-
ation while considering the patterns of misrecognition for each
speaker. Other features such as prosodic features have been in-
vestigated [13] to compensate for inherently useful but unre-
liable and costly lexical features in colloquial speech, but this
paper investigates the utilization of lexical features in a more
robust and computationally inexpensive manner.

This paper is organized as follows. After describing our
information support system and the DAs used in our elderly
speech corpus in the next section, Section 3 presents the sub-
lexical DA classifier. Section 4 presents an empirical study of
the effectiveness of the classifier.

2. DAs used by our assistive system
People with mild dementia, who exhibit memory impairment,
disorientation, and an impaired executive function, may use as-
sistive devices [14, 15, 16] to compensate for their problems
with absorbing or retaining new information, which have been
shown to be effective in their independent and autonomous life.
Our information support system is another general-purpose as-
sistive device that was designed to provide information about
schedules, times, or dates during conversations [17, 18]. The
target users have difficulties maintaining their attention and ab-
sorbing information, so the system tries to maintain a conversa-
tion with a user based on the following protocol: (1) attention-
seeking captures the user’s attention, which is diminished by de-
mentia; (2) pre-sequence prepares the user’s mind for absorbing
new information; (3) distributing information delivers the nec-
essary information; and (4) end of interaction closes the con-
versation. During each stage of the conversation, the system
can ask whether the user is following the conversation and can
go back to a previous stage if necessary.

To facilitate the computational modeling of the transition
of dialogue states, we designed the 12 dialogue acts (DAs)
described in Table 1. DAs, which are representations of the
communicative intention of each utterance, have been consid-
ered integral to the understanding and production of natural di-
alogue, and they are useful for various forms of speech and lan-
guage processing, such as speech retrieval, summarization, res-
olution of ambiguous communication, or the improvement of
speech recognition. This paper defines the specific set of DAs
used by our application, although efforts to develop domain-
independent sets of DAs exist such as DAMSL [19]. Each user
utterance is classified as one of the 12 DAs and the system pro-
duces an appropriate response based on the classification.

Thanks to the cooperation of 20 single people who were
living in nursing homes, we built a dialogue corpus between

Table 1: Dialogue acts and their frequency of occurrence (per-
centages). The inter-labeler agreement was 81.9% and κ =
0.782.

Tag Example %

Question What did you eat for dinner? 0.2
Confirmation Can you understand? 8.2
Request Action Would you like to go to the bathroom? 4.3
Request Attention May I ask a question? 15.1
Request Repeat Pardon? 2.1
Affirmative Answer Yes, I can. 26.9
Negative Answer No, I can’t. 0.2
Statement I ate fish. 60.0
Greeting How are you? 15.1
Affirmative Backchannel Sure it is. 19.9
Negative Backchannel Really? 0.2
Other Laughter, Filler 5.4

the system and the users. The details of the participants are as
follows: 3 were male and the other 17 were female, the average
age was 82.9 ± 7.2 (ranging from 67 to 97), and the average
MMSE score [20] was 21.4±5.8 (from 9 to 30). In total, 7,123
utterances were transcribed and annotated, of which 4,080 were
user utterances. The total length of user utterances was about
115 hours and the average length of them is about 1.7 ± 1.6
seconds (from 0.2 seconds to 14.8 seconds). The DAs were
annotated by two labelers and the inter-labeler agreement was
81.9%, while κ was 0.782.

3. Classification of DAs
The automatic classification of DAs comprises two important
components: features and modeling methods. The features in-
vestigated previously used various types of knowledge, e.g.,
lexical [21, 1, 2, 3, 22, 4, 23], syntactic [22, 24], prosodic [13,
1, 3, 22, 23], and discourse structural [25, 1]. In this study, sub-
lexical features, i.e., sequences of phonemes, were considered
together with the DA of the preceding utterance as contextual
knowledge. To examine the effectiveness of the sub-lexical fea-
ture, typical lexical features, i.e., word n-grams, were also con-
sidered together with the contextual knowledge.

These features are used by various modeling methods, e.g.,
decision trees [13], transformation-based learning [26], hidden
Markov models (HMMs) [1], maximum entropy models [22],
conditional random fields [27], and support vector machines
(SVMs) [3, 4]. To facilitate an exhaustive analysis of all the
sub-sequences of phonemes, an SVM with a string kernel based
on phonemes was used in this study. Before describing the
sub-lexical classifier, we describe a typical classifier based on
HMMs of words using a simpler formalization that was ob-
tained by restricting the formalization in [1] to our problem.

3.1. Lexical DA classifiers with HMMs

In a previous study [1], based on the assumption that each ob-
servation Ei is emitted from an unobservable DA Ui and the
prior distribution of U is Markovian, the optimal sequences U∗

of DAs were obtained as follows:

U∗ = argmax
U

n∏

i=1

P (Ui|Ui−1)P (E|Ui). (1)

In our application, the preceding DA Ui−1 is observable be-
cause the corresponding utterance is given by the system.
Therefore, given an utterance of the system with a DA UR, it
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is sufficient to maximize the following equation to obtain the
optimal DA U∗ of the subsequent utterances E of users,

U∗ = argmax
U

P (U |UR)P (E|U). (2)

When the observation E is a text, i.e., a sequence
W1, . . . , Wn of words and Wj is i.i.d.,

U∗ = argmax
U

P (U |UR)

n∏

j=1

P (Wj |U). (3)

When the observation E is a speech signal A represented
in spectral features and is conditioned on the N -best texts
W (1), . . . , W (n) hypothesized by a speech recognizer, U∗ is
obtained as follows.

U∗ = argmax
U

P (U |UR)P (A|U) (4)

= argmax
U

P (U |UR)

N∑

n

P (A|U, W (n))P (W (n)|U)(5)

= argmax
U

P (U |UR)

N∑

n

P (A|W (n))P (W (n)|U), (6)

where the last equality holds under the assumption that P (A)

depends only on the words W (n), although this is not true in
general because U affects the pronunciation of W (n). Although
P (A|W (n)) can be computed based on the acoustic likelihood
of the speech recognizer, it tends to be a very small value. To
avoid underflow, the maximization is computed using the max-
imum acoustic likelihood M = maxn P (A|W (n)) as follows.

U∗ = argmax
U

P (U |UR)

M

N∑

n

P (A|W (n))P (W (n)|U)(7)

= argmax
U

P (U |UR)

N∑

n

exp(L(n)) (8)

L(n) = ln(P (A|W (n))) − ln(M) + ln(P (W (n)|U))(9)

In the rest of the paper, N is set as 10.

3.2. Sub-lexical DA classifiers with SVMs

The DA classifier presented in this paper operates on sequences
of phonemes obtained using a phoneme recognizer. For any
sequence of phonemes, the DA classifier analyzes whether
any noncontiguous sub-sequence is salient to the discrimina-
tion of a particular class. The analysis is performed using an
SVM [28, 29] by computing the optimal hyperplane that sep-
arates positive samples from negative samples in the feature
space spanned by all possible sub-sequences of phonemes. Al-
though the dimension of the feature space is exponential in
terms of the length of sub-sequences, the analysis can be per-
formed efficiently using string kernels [30].

A string kernel modified for the analysis of sequences of
phonemes was investigated in a previous study [31] for topic
segmentation. Given two sequences of phonemes, s and t, the
string kernel computes the similarity between s and t efficiently
in O(p|s||t|), where p is the maximum length of sub-sequences.
The similarity is computed based on the number of occurrences
of any non-contiguous sub-sequence, where the occurrence
count is decayed according to λg (0 ≤ λ ≤ 1) for the number

g of gaps in each sub-sequence. In the occurrence count, a soft-
matching method is used between phonemes, which assigns 1 if
they are identical and a value between 0 and 1 otherwise. Based
on this definition of the similarity, the classifier is expected to
be robust against insertion, deletion, and substitution errors of
phonemes.

The kernel function is normalized and extended to consider
the contextual DA of the preceding utterance as follows:

Kℓ(s, t)
def
= δc(s),c(t)

κℓ(s, t)√
κℓ(s, s)

√
κℓ(t, t)

(10)

where κℓ is the kernel function with the length ℓ of sub-
sequences, as defined in [31], c(s) is the DA of the preceding
utterance of s, and δc(s),c(t) = 1 if c(s) = c(t), but 0 otherwise.

The string kernel is extended further to consider the
weighted contributions of different lengths ℓ of sub-sequences
as follows.

K≤p(s, t)
def
=

p∑

ℓ=1

γℓKℓ(s, t). (11)

We can see that the kernel function satisfies the Mercer con-
dition [29] required for SVM optimization because it is actu-
ally the inner-product of the feature space spanned by the sub-
sequences of phonemes, although it is computed implicitly. In
the rest of the paper, we assume γk = 1, λ = 0.7, and p = 4.

Using the string kernel, an SVM is trained to discriminate
a particular class. Because an SVM is fundamentally a binary
classifier, various methods have been considered for extending
multiple SVMs to a multi-class classifier. In this study, the sim-
ple one-versus-the-rest approach is adopted, i.e., for each DA
U , an SVM fU is trained that discriminates U from the other
DAs, and the optimal DA U∗ for any sequence s of phonemes
is obtained as U∗ = argmaxUfU (s).

In the same way as the previous section, the N -best hy-
potheses of a phoneme recognizer are considered as follows

U∗ = argmax
U

N∑

n

P (A|sn)fU (sn) (12)

=argmax
U

N∑

n

exp(ln(P (A|sn)) − ln(M))fU (sn)(13)

where M is the maximum acoustic likelihood M =
maxn P (A|sn).

4. Empirical study
The aim of the empirical study was to verify the effectiveness
of the sub-lexical DA classifier. In the experiments described
below, several classifiers were trained for 4,080 user utterances
and DAs of the utterances were predicted. For each user, the
utterances from the first several days were used for training
while the rest were used for testing. As a result, 1,920 utter-
ances were used for training and 2,160 utterances were used for
testing. Because the training data contain a small number of
samples with the following four tags: Request Action, Request
Attention, Negative Answer, and Negative Backchannel, for the
remaining eight tags, eight classifiers were trained and tested.

The transcriptions were obtained manually and automati-
cally, where the latter was conducted using a large-vocabulary
continuous speech recognizer, Julius [32]. Its dictionary and
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Table 2: Accuracy and F-measure of a lexical classifier using
HMMs and a sub-lexical classifier using SVMs for manual (MT)
and automatic (ASR) transcription.

word-HMM phone-SVM
Accuracy F1 Accuracy F1

MT 0.800 0.521 0.817 0.624
ASR 0.758 0.521 0.789 0.563

word trigram model were built from the training data. The num-
ber of entries in the dictionary was 1,008, the test set perplexity
of the language model was 17.97, and the OOV rate was 6.37%.
Its acoustic model was a gender-independent PTM triphone
model of elderly speech [33] distributed by CSRC [34], which
was adapted to each speaker using the MLLR method [35]. The
word error rate in the test data were 58%. Phonetic transcrip-
tions were obtained using the same decoder, except a phoneme
trigram model was trained and used where the phoneme error
rate was 46%.

During the training of classifiers for manual transcriptions,
transcribed texts or sequences of phonemes converted from the
texts were used. On the other hand, during the training of clas-
sifiers for automatic transcriptions, the five best hypotheses of
the output of the speech recognizers for the training data were
used as well as the texts or the sequences of phonemes obtained
from the manual transcriptions. For the parameters of SVMs,
we used λ = 0.7, γ = 1.0, C = 10.0, and p was set as p = 4
because the average lengths of the words were 4.8 phonemes.

During the evalution of the classifiers, texts or sequences of
phonemes obtained form manual or automatic transcriptions for
the test data were used. Especially for automatic transcriptions,
the 10 best hypotheses of the output of the speech recognizers
with the acoustic likelihood of them are used.

Table 2 summarizes the results of the experiments where
the accuracy indicates the ratio of correct predictions and F1
indicates the average harmonic mean of the precision and re-
call, i.e., the F-measure averaged across DAs. We can see that
the phone-SVM, i.e., the sub-lexical DA classifier with SVMs,
performed better than the word-HMM, i.e., the lexical DA clas-
sifier with HMMs in both the manual and automatic transcrip-
tions. The difference in the manual transcription was significant
(p < 0.05) according to McNemar’s test and the difference in
the automatic transcription was also significant (p < 0.01). In
the following section, these results are discussed in more detail.

4.1. Robustness of the sub-lexical DA classifier

Figure 1 depicts the accuracy of the two classifiers during
manual and automatic transcription for the convenience of the
reader. It also shows the result of the word-HMM for another
automatic transcription, which was obtained using a cheating
language model built from all of the data including the test data.
The number of entries in the dictionary for the cheating model
was 1,587, the test set perplexity was 4.70, and the word er-
ror rate was 32.6%. There was no significant difference be-
tween ASR and ASR(CHEAT), which suggests that the accu-
racy would not be improved even if a better language model
could be obtained from a larger amount of training data. Thus,
it is unlikely that that the accuracy of the word-HMM would im-
prove without an elaborate language modeling and text normal-
ization for spontaneous speech. Furthermore, the accuracy of
word-HMM would become worse as the mismatches between
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Figure 1: The lexical classifier vs. the sub-lexical classifier.
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Figure 2: Lexical features vs. sub-lexical features.

the language model and the corpus increased. On the other
hand, the accuracy of the phone-SVM would not decline be-
cause the sub-lexical classifier does not depend on the language
model.

4.2. Effectiveness of the sub-lexical features

Figure 2 shows another result of a SVM (word-SVM) using
the bag-of-words feature that operates on the feature spaces
spanned by the frequency of each word appearing in the train-
ing data. The performance of word-SVM was worse than that
of phone-SVM, and its performance was not significantly dif-
ferent from that of word-HMM. This suggests that the superior
performance of phone-SVM was not attributable to the SVM-
based modeling method, but instead it was due to the sub-lexical
features.

In particular, the difference between the word-SVM and
phone-SVM results with manual transcription was due only to
the difference between the lexical feature and the sub-lexical
feature. A possible explanation for this difference is that the
existence of multiple surface forms of a baseform degraded the
performance of word-SVM. Using phone-SVM, however, the
common fragments of the different surface forms allowed us to
capture salient properties for DA classification.

Furthermore, the difference between word-SVM and
phone-SVM in ASR was larger than in MT. The results for both
classifiers were obtained using the same decoder and the same
acoustic model, so the bigger difference may have been because
some salient word features were lost by the poor modeling of
language, whereas some fragments of the salient features were
still preserved with phone-SVM.
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5. Conclusion and future work
This paper proposed a sub-lexical DA classifier for use as a di-
alogue management module in a spoken dialogue system that
provides necessary information to elderly users with cognitive
disabilities. To avoid costly and difficult language modeling
when transcribing the colloquial utterances of the elderly users
in a faithful manner, the classifier determines the DAs based
on the sequences of phonemes obtained using a phoneme rec-
ognizer. Instead of searching for salient word features used by
many lexical classifiers, the sub-lexical classifier searches for
salient sub-sequences of phonemes while considering possible
misrecognitions, i.e., insertion, deletion, and substitution errors.
To search the space spanned by the exponentially many features
efficiently, the proposed method uses an SVM with a string ker-
nel based on sequences of phonemes. An empirical study was
conducted using a dialogue speech corpus collected from el-
derly subjects with mild dementia. The sub-lexical classifier
was found to be robust against the poor modeling of language,
while it performed better than a lexical classifier using HMMs.

These results are now limited to our small and simple di-
alogue corpus, which contains only four thousands short (1.7
seconds on average) user utterances, and only 8 of 12 DA tags
have been tested. The effectiveness of the sub-lexical DA clas-
sifier should be investigated for larger and well-studied corpora.
The DA classification itself does not essentially need any faith-
ful transcription of spontaneous speech. We believe the analy-
sis of the frequency of sub-sequences of phonemes instead of
the frequency of words is effective especially when the faithful
transcription is hard to obtain. Furthermore, the robust and cost-
efficient use of the sub-lexical feature without language model-
ing could be more effective when it is used together with other
non-lexical features, e.g., prosody.
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Abstract
This paper presents an audio-based interaction technology that
lets the user have full control over her home environment and at
detecting distress situations for the elderly and frail population.
We introduce the PATSH framework which performs real-time
recognition of voice commands anywhere in the home and de-
tail its architecture and the state-of-the-art processing technolo-
gies it employs. This system was evaluated in a realistic Smart
Home with three user groups: seniors, visually impaired people
and people with no special needs. Results showed the valid-
ity of the PATSH approach and shed light on its usability for
people with special needs.
Index Terms: Real-time audio analysis, experimental in-situ
evaluation, Smart Home, Ambient Assisted Living

1. Introduction
Due to the demographic change and ageing in developed coun-
tries, the number of older persons is steadily increasing. In this
situation, the society must find solutions to allow these people
to live in their home as comfortably and safely as possible by
assisting them in their daily life. This concept, known as Ambi-
ent Assisted Living (AAL) aims at anticipating and responding
to the special needs of these persons. In this domain, the devel-
opment of Smart homes and intelligent companions is seen as a
promising way of achieving in-home daily assistance [1]. How-
ever, given the diverse profiles of the senior population (e.g.,
low/high technical skill, disabilities, etc.), complex interfaces
should be avoided. Nowadays, one of the best interfaces seems
to be the speech interface, that makes possible interaction using
natural language so that the user does not have to learn complex
computing procedures or jargon. Moreover, it is well adapted
to people with reduced mobility and to some emergency sit-
uations because the user doesn’t need to be close to a switch
(”hands free” system). Despite all this, very few Smart Home
projects have seriously considered speech recognition in their
design [2, 3, 4, 5, 6, 7, 8]. Part of this can be attributed to the
complexity of setting up this technology in a real environment
and to important challenges that still need to be overcome [9].

In order to make in home voice control a success and a
benefit for people with special needs, we argue that a complete
framework for audio analysis in Smart Home must be designed.
This framework should be able to provide real-time response,
to analyse concurrently several audio channels, to detect audio
events, to filter out noise and to perform robust distant speech

recognition. Furthermore, in contrast with current triggered-by-
button ASR systems commonly found in smart phone, this voice
control should be able to work in an “hand free” manner in case
the person is not able to move. Another important aspect is the
respect for privacy: the system should not disseminate any raw
personal data outside the home without the user’s consent. Our
approach, called PATSH is a step toward these goals. The orig-
inality of the approach is to consider these problems together
while they have mostly been studied separately.

To the best of our knowledge, the main trends in audio tech-
nology in Smart Homes are related to augmented human ma-
chine interaction (e.g., voice command, conversation) and se-
curity (mainly fall detection and distress situation recognition).
Regarding security, the main application is the fall detection us-
ing the signal of a wearable microphone which is often fused
with other modalities (e.g., accelerometer) [4, 3]. However, the
person is constrained to wear these sensors at all times. To ad-
dress this constraint, the dialogue system developed by [6] was
proposed to replace traditional emergency systems that requires
too much change in the lifestyle of the elders. However, the
prototype had a limited vocabulary (yes/no dialogue), was not
tested with aged users and there is no mention about how the
noise was taken into account. Most of the speech related re-
search or industrial projects in AAL are actual highly focused
on dialogue to build communicative agent (e.g., see the EU
funded Companions or CompanionAble projects or the Semvox
system 1). These systems are often composed of ASR, NLU,
Dialogue management and TTS parts supplying the user the
ability to communicate with the system in an interactive fash-
ion. However, it is generally the dialogue module (manage-
ment, modelling, architecture, personalization, etc.) that is the
main focus of these projects (e.g., see Companions, OwlSpeak
or Jaspis). Moreover, this setting is different from the Smart
Home one as the user must be close to the avatar to speak (i.e.,
not a distant speech setting). In [7], a communicative avatar was
designed to interact with a person in a smart office. In this re-
search, enhanced speech recognition is performed using beam-
forming and a geometric area of recording. But this promising
research is still to be tested in a multiroom and multisource re-
alistic home.

Designing and applying speech interfaces in Smart Home
to provide security reassurance and natural man-machine inter-
action is the aim of the SWEET-HOME2 project. With respect

1http://www.semvox.de
2http://sweet-home.imag.fr
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to this short state-of-the-art, the project addresses the important
issues of distant voice command recognition and sound source
identification. The outcomes of this research are of high im-
portance to improve the robustness of the systems mentioned
above. In this paper, we introduce the PATSH system which
perform the real-time identification of the voice command any-
where in the home. Its architecture and the state-of-the-art pro-
cessing technologies employed are detailed in Section 2. This
system was evaluated in a realistic Smart Home with three user
groups: people with no special needs, seniors and, visually im-
paired people. These experiments are summarised in Section 3.
PATSH was used on-line (vs. off-line) during the experiment,
these results are analysed in Section 4. The paper finishes with
a short outlook of future work.

2. The Audio Analysis System
The SWEET-HOME system is composed of an Intelligent Con-
troller which analyses the streams of data and makes decision
based on these. This framework acquires data from sensors and
interprets them, by means of IA techniques, to provide contex-
tual information for decision making. The description of this
intelligent controller is out of the scope of the paper, the reader
is thus referred to [12] for further details. This system uses a
two-level ontology to represent the different concepts handled
during the processing which also contains SWRL instances to
automatise some of the reasoning. An important aspect is the
relationship between the knowledge representation and the de-
cision process which uses a dedicated Markov Logic Network
approach to benefit from the formal logical definition of deci-
sion rules as well as the ability to handle uncertain facts inferred
from real data. The location of the inhabitant was determined
by the intelligent controller that analysed continuously the data
stream of the smart-home (not only audio) and made decisions
based on the recognized voice commands and this contextual
information.

Therefore, the streams of data are composed of all the
usual home automation data sensors (switches, lights, blinds,
etc.), multimedia control (uPnP), and the audio events pro-
cessed in real-time by the multi-channel audio analysis sys-
tem: PATSH. Indeed, this section describes the overall archi-
tecture of PATSH, details the sound/speech discrimination and
the ASR part.

2.1. PATSH framework

The global architecture of PATSH is illustrated in Figure 1.
The PATSH framework is developed with the .Net cross plat-
form technology. The main data structure is the Sound object,
which contains a segment of the multidimensional audio signal
whose interpretation is continuously refined during the process-
ing pipeline. PATSH deals with the distribution of the data
among the several plugins that perform the processing to in-
terpret the audio events. The execution can be done, in paral-
lel, synchronously or asynchronously, depending on the settings
stored in a simple configuration file. In SWEET-HOME, the plu-
gins were actually developed in C or C++ and PATSH includes
the mechanism to transfer sound events from the plugins to the
PATSH framework and vice-versa.

In the SWEET-HOME configuration, PATSH runs plugins
that perform the following tasks:

1. Multichannel data Acquisition through the NI-
DAQ6220E card. Seven channels are acquired at 16kHz
(16 bits quantification);

2. Sound Detection and Extraction, detecting the start and
end of sound events on each channel in parallel;

3. Sound/Speech Discrimination, discriminating speech
from other sounds to extract voice commands;

4. Sound Classification, recognizing daily living sounds
(not developed in this paper, see [13] for details);

5. Automatic Speech Recognition (ASR), applying speech
recognition to events classified as speech and extracting
vocal orders; and

6. Presentation, communicating the sound event to the In-
telligent Controller. If a vocal order is detected and ac-
cording to the context (activity and localisation of the
user in the flat), a home automation command is gener-
ated to make the light up, close the curtains or emit a
warning message thanks to a voice synthesizer.

The PATSH framework was developed to process on-line
sound objects continuously detected on the 7 audio channels.
However, it exists a bottleneck between the acquisition task and
the event processing task. Given that one sound event can be
simultaneously detected by several channels, the amount of the
sound events in the queue can quickly rise.

2.2. Sound Event Detection

The detection of the occurrence of an audio event is based on the
change of energy level of the 3 highest frequency coefficients
of the Discrete Wavelet Transform (DWT) in a sliding window
frame (last 2048 samples without overlapping). Each time the
energy on a channel goes beyond a self-adaptive threshold, an
audio event is detected until the energy decrease below this level
for at least an imposed duration [2]. At the end of the detection,
the Signal to Noise Ratio (SNR) is computed by dividing the
energy in the event interval and the previous energy in a window
outside this interval. This process is operated on each channel
independently.

2.3. Sound/Speech Discrimination

Once sound occurrences are detected, the most important task is
to distinguish speech from other sounds. In everyday life, there
is a large number of different sounds, modelling all of them is ir-
relevant. For the SWEET-HOME project, distant voice command
and distress situation detection, speech is the most important
sound class. The method used for speech/sound discrimination
is a GMM (Gaussian Mixture Models) classification.

The Sound/Speech Discrimination stage has a very impor-
tant role: firstly, vocal orders must not be missed, secondly,
daily living sounds must not be sent to the ASR because unde-
sirable sentences could be recognized. To recognize only vocal
orders and not all sentences uttered in the flat, all sound events
shorter than 150 ms and longer than 2.2 seconds were ignored
as well as those whose SNR is below 0 dB. These values were
chosen after a statistical study on our data bases.

2.4. Voice order recognition

In a Smart Home, the microphones are generally set in the
ceiling and on the wall. This places the study in a distant-
speech context where microphones may be far from the speaker
and may record different noise sources. Moreover, the appli-
cation calls for quick decoding so that voice commands are
sent as soon as possible to the intelligent controller. This is
why we used the Speeral tool-kit [10] developed by the LIA
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Figure 1: The PATSH architecture.

(Laboratoire d’Informatique d’Avignon). Indeed, its 1xRT con-
figuration allows a decoding time similar to the signal du-
ration. Speeral relies on an A∗ decoder with HMM-based
context-dependent acoustic models and trigram language mod-
els. HMMs are classical three-state left-right models and state
tying is achieved by using decision trees. Acoustic vectors are
composed of 12 PLP (Perceptual Linear Predictive) coefficients,
the energy, and the first and second order derivatives of these 13
parameters.

The acoustic models of the ASR system were trained on
about 80 hours of annotated speech. Furthermore, acoustic
models were adapted to the speech of 23 speakers recorded in
the same flat during previous experiments by using Maximum
Likelihood Linear Regression (MLLR) [8]. A 3-gram Language
Model (LM) with a 10K lexicon was used. It results from the
interpolation of a generic LM (weight 10%) and a domain LM
(weight 90%). The generic LM was estimated on about 1000M
of words from the French newspapers Le Monde and Gigaword.
The domain LM was trained on the sentences generated using
the grammar of the application (see Fig. 3). The LM combina-
tion biases the decoding towards the domain LM but still allows
decoding of out-of-domain sentences. A probabilistic model
was preferred over using strictly the grammar because it makes
it possible to use uncertain hypotheses in a fusion process for
more robustness.

3. Experiments in real conditions
3.1. Experimental flat

Experiments were run in the DOMUS smart home. Figure 2
shows the details of the flat. It is a thirty square meters suite
flat including a bathroom, a kitchen, a bedroom and a study, all
equipped with 150 (konnex) KNX sensors and actuators. The
flat has been equipped with 7 radio microphones set in the ceil-
ing for audio analysis. A specialized communication device,
e-lio, from the Technosens company was used to initiate a com-
munication between the user and a relative.

3.2. Voice orders

Possible voice orders were defined using a very simple gram-
mar as shown on Figure 3. Each order belongs to one of three
categories: initiate command, stop command and emergency
call. Except for the emergency call, every command starts with
a unique key-word that permits to know whether the person is
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Figure 2: Position of the microphones and other sensors inside
the DOMUS smart home.

talking to the smart home or not. In the following, we will use
‘Nestor’ as key-word:

set an actuator on: (e.g. Nestor ferme fenêtre)
key initiateCommand object

stop an actuator: (e.g. Nestor arrête)
key stopCommand [object]

emergency call: (e.g. Nestor au secours)

The grammar was built after a user study that showed that
targeted users would prefer precise short sentences over more
natural long sentences [11]. In this study, although most of the
older people spontaneously controlled the home by uttering sen-
tences, the majority said they wanted to control the home using
keywords. They believe that this mode of interaction would be
the quickest and the most efficient. This study also showed that
they also had tendency to prefer or to accept the ‘tu’ form (in-
formal in French) to communicate with the system given this
system would be their property.

3.3. Scenarios and experiments

To validate the system in realistic conditions, we built scenarios
in which every participant was asked to perform the following
activities: (1) Sleeping; (2) Resting: listening to the radio; (3)
Feeding: preparing and having a meal; and (4) Communicating:
having a talk with a remote person thanks to e-lio. Therefore,
this experiment allowed us to process realistic and representa-
tive audio events in conditions which are directly linked to usual
daily living activities. Moreover, to evaluate the decision mak-
ing, some specific situations were planned in the scenarios. For
instance, for the decision regarding the activation of the light,
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basicCmd = key initiateCommand object |
key stopCommand [object] |
key emergencyCommand

key = "Nestor" | "maison"
stopCommand = "stop" | "arrête"
initiateCommand = "ouvre" | "ferme" | "baisse" | "éteins" | "monte" | "allume" | "descend" |

"appelle" " | "donne"
emergencyCommand = "au secours" | "à l’aide"
object = [determiner] ( device | person | organisation)
determiner = "mon" | "ma" | "l’" | "le" | "la" | "les" | "un" | "des" | du"
device = "lumière" | "store" | "rideau" | "télé" | "télévision" |

"radio" | "heure" | "température"
person = "fille" | "fils" | "femme" | "mari" | "infirmière" | "médecin" | "docteur"
organisation = "samu" | "secours" | "pompiers" | "supérette" | "supermarché"

Figure 3: Excerpt of the grammar of the voice orders (terminal symbols are in French)

given that the bedroom had two lights (the ceiling and the bed-
side one) as well as the kitchen (above the dinning table and
above the sink), the four following situations were planed:

1. Situation 1. The person is having a meal on the kitchen
table. The most appropriate light is the one above the
table.

2. Situation 2. The person is cleaning up the bedroom. The
most appropriate light is the ceiling one.

3. Situation 3. The person is cleaning the sink and doing
the dishes. The most appropriate light is the one above
the sink.

4. Situation 4. The person has just finished a nap. The
most appropriate light is the bedside one.

Each participant had to use vocal orders to make the light
on or off, open or close blinds, ask about temperature and ask to
call his or her relative. The instruction was given to the partici-
pant to repeat the order up to 3 times in case of failure. In case
of, a wizard of Oz was used in case of persistent problem.

Sixteen participants (including 7 women) without special
needs were asked to perform the scenarios without condition on
the duration. A visit, before the experiment, was organized to
ensure that the participants will find all the items necessary to
perform the scenarios. It was necessary to explain the right way
to utter vocal orders and to use the e-lio system. Before the
experiment, the participant was asked to read a text of 25 short
sentences in order to adapt the acoustic models of the ASR for
future experiments. The average age of the participants was
38 years (19-62, min-max) and the experiment lasted between
23min and 48min. The scenario includes at least 15 vocal orders
for each participant but more sentences were uttered because of
repetitions.

3.4. Acquired Corpus

During the experiment, audio data were recorded and saved in
two ways. Firstly, the 7-channel raw audio signal was stored
for each participant to make subsequent analysis possible. In
total, 8h 52min 36s of data was recorded for the 16 participants.
Secondly, the individual sound events automatically detected by
PATSH were recorded to study the performances of this frame-
work.

Apart from daily living sounds and sentences uttered in the
flat by the participant, PATSH also detected the system mes-
sages (vocal synthesizer) and the e-lio communications. Over-
all, 4595 audio events were detected whose 993 were speech
and 3503 were other noise occurrences. The number of events

corresponding to each category –speech or everyday living
sound– is displayed Table 1.

Table 1: Number of audio events (speech and sound).

Speaker Speech Sound Speech Mis Mis
ID and classified classified

sound speech sound
S01 213 184 29 8 1
S02 285 212 73 10 6
S03 211 150 61 8 6
S04 302 211 91 10 11
S05 247 100 48 11 4
S06 234 189 45 17 6
S07 289 216 72 21 6
S08 249 190 59 25 3
S09 374 283 91 19 7
S10 216 163 53 10 4
S11 211 155 56 18 2
S12 401 346 55 13 13
S13 225 184 41 4 7
S14 235 173 62 9 10
S15 641 531 111 39 17
S16 262 216 46 10 5
ALL 4595 3503 993 232 108

In this study, we are only interested in recognizing vocal or-
ders or distress sentences. All other spontaneous sentences and
system messages are not irrelevant. Therefore, the global audio
records were annotated using Transcriber in order to extract the
syntactically correct vocal orders, results are shown in Table 2.
The average SNR and duration are 15.8dB and 1s, this SNR
value is low compared to studio conditions (SNR≥35dB). As
the home automation system needs only one correct sentence to
interact, only the less noisy channel was kept. The number of
vocal orders is different for each speaker because if a vocal or-
der was not correctly recognized, the requested action was not
operated by the intelligent controller (light on or off, curtains up
or down. . . ) and thus the speaker often uttered the order two or
three times. Thanks to this annotation, an oracle corpus was ex-
tracted. The comparison between experimental real-time results
with thus obtained with the same ASR on the oracle corpus will
allow to analyse the performance of the PATSH system.

102



Table 2: Number of syntactically correct vocal orders

Speaker Number SNR Speaker Number SNR
ID (dB) ID (dB)

S01 20 17 S02 32 17
S03 22 19 S04 26 18
S05 26 12 S06 24 15
S07 19 25 S08 33 12
S09 40 20 S10 40 11
S11 37 14 S12 26 17
S13 21 14 S14 27 12
S15 28 14 S16 22 14
All 443 15.8

4. Results
4.1. Discrimination between speech and sounds

The detection part of the system is not specifically evaluated
because of the lack of time to label all the sound events on
the 7 channels. However, all the results presented take into
account the performances of the detection because the signals
are extracted automatically by the system. The sound/speech
discrimination misclassified 108 sound and 232 speech occur-
rences which gives a total error rate of about 7.4% which is in
line with other results of the literature [13]. 23.4% of speech oc-
currences were classified as sound. Theses poor performances
are explained by the fact that PATSH was not successful in
selecting the best audio event among the set of simultaneous
events and thus the events with low SNR introduced errors and
were not properly discriminated. For the sounds, 3.1% of sound
occurencies are classified as speech. Sounds such as dishes, wa-
ter flow or electric motor were often confused with speech. For
instance, when certain persons stirred the coffee and chocked
the spoon on the cup or when they chocked plates and cutlery,
the emitted sounds had resonant frequencies very close to the
speech one. This is emphasizing the difficulty of the task and
models must be improved to handle these problematic samples.

4.2. Home automation order recognition

The global performance of the system is directly related to vo-
cal order recognition. The DER (Domotic Error Rate) is shown
in Table 3, the 2nd and 5th columns "Expe." indicates the re-
sults for the real-time experiment. This error rate is evaluated
after filtering at the input of the intelligent controller and in-
cludes the global effects of all stages: detection, discrimina-
tion between speech and sound, ASR. When the uttered voice
orders were not respecting the grammar, for example when a
sentence such as “Nestor heure” is uttered instead of the com-
mand “Nestor donne l’heure”, these utterances were discarded.
Moreover, some speakers’ utterances exceeded the 2.2s dura-
tion threshold because of their hesitation, therefore correspond-
ing vocal orders were not analysed and considered as missed.
In case of music in the room, vocal orders were often longer be-
cause of the mixing between speech and music. Consequently
future experiments will need to set the threshold to 2.5s and to
include a short training step to allow the participant to become
familiar with this technology.

The ASR system used generic acoustic models without
adaptation to the speaker and then regional or foreigner accent
may have an influence: it’s in particular the case for S10 (Ara-
bic) and S14 (Alsatian). The participants S07 and S15 show

Table 3: Home automation order error rate (DER)

Speaker Expe. Oracle Speaker Expe. Oracle
ID (%) (%) ID (%) (%)

S01 35 20 S02 12.5 6.2
S03 22.7 22.7 S04 23 7.7
S05 15 3.8 S06 21 8.3
S07 79 52.6 S08 30 33.3
S09 40 22.5 S10 67 47.5
S11 46 27 S12 21 7.7
S13 43 19 S14 48 29.6
S15 71 55.5 S16 18 13.6

Average 38% 23.9%

low performance because they were not able to follow the given
instructions, the presence of large part of silence mixed with
noise between the words is analysed as phoneme and therefore
increases the error rate.

Part of the errors was due to the way PATSH managed si-
multaneous detections of one sound event. At this time of the
process, the SNR is not known with a sufficient precision and
the choice is not perfect. Then, in some cases, a part of the
speech signal is missed (beginning or end of the order) and this
introduces a bad recognition. Moreover, very often the detec-
tion is not perfectly simultaneous and more than one channel is
analysed by the ASR. Therefore, some improvement were intro-
duced in PATSH for future experiments: that consisted in mak-
ing the decision after the end of detection on the 7 threads (each
thread corresponding to one channel) thanks to a filtering win-
dow of 500ms. The disadvantage is that the system is slowed
down with a delay of 500ms but this will avoid the recognition
of bad extracted sentences and this is compensated by the anal-
ysis of only the signal of the best channel.

An important aspect is the decoding time because the de-
vice must be activated with a delay as short as possible. In this
experiment, the decoding times reached up to 4 seconds which
was a clear obstacle for usage in real condition. Hopeful, this
has been reduced.

5. Preliminary Results from experiments
with the aged and visually impaired

population
The method has also been applied in the same context but with
aged and visually impaired people. The aim was both to validate
the technology with this specific population and to perform a
user study to assess the adequacy of this technology with the
targeted users and to compare with the other user studies of the
literature [14, 11].

Between the two experiments, several corrections were ap-
plied to PATSH so that the sound/speech discrimination was
greatly improved as well as the speech decoding time. The mea-
sured decoding time was 1.47 times the sentence duration; as
the average duration of a vocal order was 1.048s, the delay be-
tween the end of the utterance and the execution of the order
was 1.55s. This is still not a satisfactory delay but this does not
prevent usage in real conditions.

5.1. Experimental set up

In this experiment, eleven participants either aged (6 women) or
visually impaired (2 women, 3 men) were recruited. The aver-
age age was 72 years (49-91, min-max). The aged persons were
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fully autonomous but were living alone. The participants were
asked to perform 4 scenarios involving daily living activities
and distress or risky situations.

1. The participant is eating her breakfast and is preparing
to go out. She asked the house to turn on the light, close
the blinds or ask for the temperature while doing these
activities.

2. The participant is coming back from shopping and is go-
ing to have a nap. She asked the same kind of commands
but in this case, a warning situation alerts about the front
door not being locked.

3. The participant is going to the study to communicate
with one relative through the dedicated e-lio system. Af-
ter the communication, the participant simulates a sud-
den weakness and call for help.

4. The participant is waiting in the study for friends going
to visit her. She tests various voice orders with the radio,
lights and blinds.

During this experiment, 4 hours and 39 minutes of data was
collected including the same sensors as the one previously de-
scribed in Section 3.4.

5.2. First feedbacks

All the participants went through a questionnaire and a debrief-
ing after the experiment. We are still in the process of analysing
the results but overall, none of the aged or visually impaired
persons had any difficulty in performing the experiment. They
all appreciated to control the house by voice.

It is worth emphasizing that aged people preferred the man-
ual interaction because this was quicker. However, they liked
the voice warning in case of risky situations. Regarding the
visually impaired participants, they found that the voice com-
mand would be more adequate if it could enable performing
more complex or dangerous tasks than controlling blinds or ra-
dio. For instance, by enabling them to use the household appli-
ances. Overall, half of the participants found the system adapted
for their use.

6. Discussion
Overall, the performance of the system was still low but the
results showed there is room for improvement. Sound/Speech
discrimination has been improved since the beginning of the
experiment and continue to be improved. The biggest problems
were the response time which was unsatisfactory (for 6 partici-
pants out of 16) and the mis-understanding of the system which
implied to repeat the order (8/16). These technical limitations
were reduced when we improved the ASR memory manage-
ment and reduced the search space. After this improvement,
only one participant with special needs complained about the
response time. None of the encountered problem challenged
the PATSH architecture. That is why we are studying the pos-
sibility of releasing the code publicly.

The grammar was not the focus of the project but it has
been built to be easily adaptable at the word level (for instance,
if someone wants to change “Nestor” for another word). All
the 16 participants found the grammar easy to learn. Only four
of them found the keyword “Nestor” unnatural while the oth-
ers found it natural and funny. However, this approach suffers
a lack of natural adaptivity to the user’s preferences, capacities
and culture as any change would require technical intervention.

For instance, [15] emphasized that elder Germans tend to ut-
ter longer and politer commands than their fellow countrymen
which contrast with our findings. Despite longitudinal studies
are require to understand human preferences regarding voice or-
ders, methods to adapt on-line the grammar to the user must be
developed.

The acquired corpus made it possible to evaluate the perfor-
mance of the audio analysis software. But interest goes far be-
yond this experiment because it constitutes a precious resource
for future work. Indeed, one of the main problems that im-
pede researches in this domain is the need for a large amount
of annotated data (for analysis, machine learning and reference
for comparison). The acquisition of such datasets is highly ex-
pensive both in terms of material and of human resources. For
instance, in a previous experiment involving 21 participants in
the DOMUS smart home, the acquisition and the annotation of
a 33-hour corpus has cost approximatively 70ke. Thus, mak-
ing these datasets available to the research community is highly
desirable. This is why we are studying the possibility of mak-
ing part of it available to the society as we did in our previous
project [16].

7. Conclusion

This paper presents the PATSH system, the audio processing
module of the voice controlled SWEET-HOME system which
performs real-time identification of voice commands in the
home for assisted living. In this system, the identified sound
events are sent to an intelligent controller for final context-aware
decision about the action to make on the house [17]. The exper-
iments made in the Smart Home to evaluate the system showed
promising results and validate the approach. This technology
can benefit both the disabled and the elderly population that
have difficulties in moving or seeing and want security reas-
surance.

Our application of this technology within a realistic Smart
Home, showed that one of the most sensible tasks is the
speech/noise discrimination [9]. According to the SNR level,
the performance can be quite poor, which has side effects on
both the ASR and the sound classification (and then on the de-
cision making). Another issue is linked to the lack of handling
of simultaneous sound event records. These fill the sound ob-
ject queue, which is the system bottleneck, and thus slow down
the processing while real-time performances are required. To
increase the performance and free this bottleneck, we had im-
plemented a filtering strategy to remove low SNR audio events
as well as too delayed events. The preliminary results showed
a significant increase in performance. In a second step, PATSH
will be modified to allow in real-time a multisource ASR thanks
to the Driven Decoding Algorithm [18].

Although the participants had to repeat, sometimes up to
three times, the voice command, they were overall very ex-
cited about commanding their own home by voice. We are
still in the process of analysing the results of the experiment
which included seniors and visually impaired people to get es-
sential feedback from this targeted population. Future work
will include improvements of the speech recognition in noisy
environment and customisation of the grammar as well as ex-
periments using specialised communication devices to enhance
user’s communication capacity.
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Abstract 
When individuals lose the ability to produce their own speech, 
due to degenerative diseases such as motor neurone disease 
(MND) or Parkinson’s, they lose not only a functional means of 
communication but also a display of their individual and group 
identity. In order to build personalized synthetic voices, attempts 
have been made to capture the voice before it is lost, using a 
process known as voice banking. But, for some patients, the 
speech deterioration frequently coincides or quickly follows 
diagnosis. Using HMM-based speech synthesis, it is now 
possible to build personalized synthetic voices with minimal data 
recordings and even disordered speech. The power of this 
approach is that it is possible to use the patient’s recordings to 
adapt existing voice models pre-trained on many speakers. When 
the speech has begun to deteriorate, the adapted voice model can 
be further modified in order to compensate for the disordered 
characteristics found in the patient’s speech. The University of 
Edinburgh has initiated a project for voice banking and 
reconstruction based on this speech synthesis technology. At the 
current stage of the project, more than fifteen patients with MND 
have already been recorded and five of them have been delivered 
a reconstructed voice. In this paper, we present an overview of 
the project as well as subjective assessments of the reconstructed 
voices and feedback from patients and their families. 
Index Terms: HTS, Speech Synthesis, Voice Banking, Voice 
Reconstruction, Voice Output Communication Aids, MND. 

1. Introduction 
Degenerative speech disorders have a variety of causes that 
include Multiple Sclerosis, Parkinson’s, and Motor Neurone 
Disease (MND) also known in the USA as Amyotrophic Lateral 
Sclerosis (ALS). MND primarily affects the motor neurones in 
the brain and spinal cord. This causes a worsening muscle 
weakness that leads to a loss of mobility and difficulties with 
swallowing, breathing and speech production. Initial symptoms 
may be limited to a reduction in speaking rate, an increase of the 
voice’s hoarseness, or an imprecise articulation. However, at 
some point in the disease progression, 80 to 95% of patients are 
unable to meet their daily communication needs using their 
speech; and most are unable to speak by the time of their death 
[1]. As speech becomes difficult to understand, these individuals 
may use a voice output communication aid (VOCA). These 
devices consist of a text entry interface such as a keyboard, a 
touch screen or an eye-tracker, and a text-to-speech synthesizer 
that generates the corresponding speech. However, when 
individuals lose the ability to produce their own speech, they lose 
not only a functional means of communication but also a display 
of their individual and social identity through their vocal 
characteristics.  

 
Current VOCAs are not ideal as they are often restricted to a 
limited set of impersonal voices that are not matched to the age 
or accent of each individual. Feedback from patients, careers and 
patient societies has indicated that there is a great unmet need for 
personalized VOCAs as the provision of personalized voice is 
associated with greater dignity and improved self-identity for the 
individual and their family [2]. 
In order to build personalized VOCAs, several attempts have 
been made to capture the voice before it is lost, using a process 
known as voice banking. One example of this approach is 
ModelTalker [3], a free voice building service that can be used 
from any home computer in order to build a synthetic voice 
based on diphone concatenation, a technology developed in the 
1980s. The user of this service has to record around 1800 
utterances in order to fully cover the set of diphones and the 
naturalness of the synthetic speech is rather low. Cereproc [4] 
has provided a voice building service for individuals, at a 
relatively high cost, which uses unit selection synthesis, and is 
able to generate synthetic speech of increased naturalness. Wants 
Inc. in Japan also provides a commercial voice building service 
for individuals called “Polluxstar”. This is based on a hybrid 
speech synthesis system [5] using both unit selection and 
statistical parametric speech synthesis [6] to achieve a natural 
speech quality. However, all these speech synthesis techniques 
require a large amount of recorded speech in order to build a 
good quality voice. Moreover the recorded speech data must be 
as intelligible as possible, since the data recorded is either used 
directly or partly as the voice output. This requirement makes 
such techniques more problematic for those patients whose 
voices have started to deteriorate. Therefore, there is a strong 
motivation to reduce the complexity and to increase the 
flexibility of the voice building process so that patients can have 
their own synthetic voices build from limited recordings and 
even deteriorating speech. 
Recently, a new voice building process using the hidden Markov 
model (HMM)-based speech synthesis technique has been 
investigated to create personalized VOCAs [7-8]. This approach 
has been shown to produce high quality output and offers two 
major advantages over existing methods for voice banking and 
voice building. First, it is possible to use existing speaker-
independent voice models pre-trained over a number of speakers 
and to adapt them towards a target speaker. This process known 
as speaker adaptation [9] requires only a very small amount of 
speech data. The second advantage of this approach is that we 
can control and modify various components of the adapted voice 
model in order to compensate for the disorders found in the 
patient’s speech. We call this process “voice reconstruction”. 
Based on this new approach, the University of Edinburgh, the 
Euan MacDonald Center for MND and the Anne Rowling 
Regenerative Neurology Clinic have started a collaborative 
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project for voice banking and voice reconstruction [10-11]. At 
the current stage of the project, more than 15 patients with MND 
have already been recorded and 5 of them have been delivered a 
reconstructed voice. We present here the technical concepts 
behind this project as well as a subjective assessment of the 
reconstructed voices. 

2. HMM-Based Speech Synthesis 
Our voice building process is based on the state-of-the-art 
HMM-based speech synthesizer, known as HTS [6]. As opposed 
to diphone or unit-selection synthesis, the HMM-based speech 
synthesizer does not use the recorded speech data directly as the 
voice output. Instead it is based on a vocoder model of the 
speech and the acoustic parameters required to drive this vocoder 
are represented by a set of statistical models. The vocoder used 
in HTS is STRAIGHT and the statistical models are context-
dependent hidden semi-Markov models (HSMMs), which are 
HMMs with explicit state duration distributions. The state output 
distributions of the HSMMs represent three separate streams of 
acoustic parameters that correspond respectively to the 
fundamental frequency (logF0), the band aperiodicities and the 
mel-cepstrum, including their dynamics. For each stream, 
additional information is added to further describe the temporal 
trajectories of the acoustic parameters, such as their global 
variances over the learning data. Finally, separate decision trees 
are used to cluster the state durations probabilities and the state 
output probabilities using symbolic context information at the 
phoneme, syllable, word, and utterance level. In order to 
synthesize a sentence, a linguistic analyser is used to convert the 
sequence of words into a sequence of symbolic contexts and the 
trained HSMMs are invoked for each context. A parameter-
generation algorithm is then used to estimate the most likely 
trajectory of each acoustic parameter given the sequence of 
models. Finally the speech is generated by the STRAIGHT 
vocoder driven by the estimated acoustic parameters. 

3. Speaker Adaptation 
One advantage of the HMM-based speech synthesis for voice 
building is that the statistical models can be estimated from a 
very limited amount of speech data thanks to speaker adaptation. 
This method [9] starts with a speaker-independent model, or 

“average voice model”, learned over multiple speakers and uses 
model adaptation techniques drawn from speech recognition 
such as maximum likelihood linear regression (MLLR), to adapt 
the speaker independent model to a new speaker. It has been 
shown that using 100 sentences or approximately 6-7 minutes of 
speech data is sufficient to generate a speaker-adapted voice 
that sounds similar to the target speech [7]. This provides a much 
more practical way to build a personalized voices for patients. 
For instance, it is now possible to construct a synthetic voice for 
a patient prior to a laryngectomy operation, by quickly recording 
samples of their speech [8]. A similar approach can also be used 
for patients with degenerative diseases before the diseases affect 
their speech. The speaker adaptation process is most successful 
when the average voice model is already close to the voice 
characteristics of the target speaker. Therefore, one goal of the 
voice-bank project is to record a large catalogue of healthy 
voices from which we can derive a set of average voice models 
corresponding to different age, gender and regional accents 
combinations. This will be presented in Section 5. 

4. Voice Reconstruction 
 Some individuals with neurodegenerative disease may already 
have speech symptoms at the time of the recording. In that case, 
the speaker adaptation process will also replicate these 
symptoms in the speaker-adapted voice. Therefore we need to 
remove speech disorders from the synthetic voice, so that it 
sounds more natural and more intelligible. However since the 
HTS is based on a vocoder model of the speech, we can now 
exploit the acoustic models learned during the training and the 
adaptation processes in order to control and modify various 
speech features. This is the second major advantage of using 
HMM-based speech synthesis. In particular, HTS has 
statistically independent models for duration, log-F0, band 
aperiodicity and mel-cepstrum. This allows the substitution of 
some models in the patient's speaker-adapted voice by that of a 
well-matched healthy voice or an average of multiple healthy 
voices, as illustrated in Figure 1. Although disordered speech 
perceptually deviates considerably from normal speech in many 
ways, it is known that its articulatory errors are consistent [12] 
and hence relatively predictable [13]. Therefore we can pre-
define a substitution strategy for a given condition, to some 
extent.

 
Figure 1: The structure of the acoustic models in HTS means that there can be a substitution of state output or state duration models 

between an healthy voice model and the patient voice model in order to compensate for any deterioration in the patient’s speech.
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For example, patients with MND often have a disordered 
speaking rate, contributing to a loss of the speech intelligibility. 
The substitution of the state duration models enables the timing 
disruptions to be regulated at the phoneme, word, and utterance 
levels. Furthermore, MND speakers often have breathy or hoarse 
speech, in which excessive breath through the glottis produces 
unwanted turbulent noise. In such cases, we can substitute the 
band aperiodicity models to produce a less breathy or hoarse 
output. In the following part of this section, we present different 
levels of model substitution. All these levels are combined in the 
final voice reconstruction process. 
4.1. Baseline model substitution 
In a first approach [7], the following models and information are 
substituted: 

• Duration and aperiodicity models 
• Global variances of log-F0, aperiodicity and mel-

cepstrum  
These parameters are the less correlated with the speaker identity 
and their substitution can fix some disorders such as slow 
speaking rate and excessive hoarseness. However, this 
substitution strategy cannot correct articulation disorders. 

4.2. Component-wise model substitution 
This is an extension of the baseline model substitution. Since the 
state output distributions have diagonal covariance matrix, we 
can substitute a component independently from the others. This 
component-wise substitution strategy allows to substitute the 
parts of the mel-cepstrum and log-F0 streams that are the less 
correlated with the speaker identity. In this way, we can further 
reduce some disorders without altering the voice identity. In 
particular, we substitute the mean and variance for the following 
components: 

• 1st coefficient of the mel-cepstrum (energy) 
• High-order coefficients of the mel-cepstrum  
• Dynamics coefficients of the mel-cepstrum and log-F0 
• Voiced/Unvoiced weights 

The substitution of the high order static coefficients and the 
dynamics coefficients of the mel-cepstrum will help to reduce 
the articulation disorders without altering the timbre. In our 
implementation, we replace all static coefficients of order N>40. 
The substitution of the dynamics coefficients of the log-F0 will 
help to regulate the prosodic disorders such as monotonic F0. 
Finally the replacement of the voiced/unvoiced weights will fix 
the breathiness disorders. The duration models, aperiodicity 
models, and global variances are also substituted as in the 
baseline strategy. We will refer to this method as the 
component-wise strategy. 

4.3. Context-dependent model substitution 
In the two previous strategies, the model substitutions are 
independent of the context. However, in HTS, the acoustic 
models are clustered after their contexts by separate decisions 
trees. We can use this contextual information to further refine the 
model substitution. For example, some MND patients cannot 
pronounce correctly the plosives, the approximants and the 
diphthongs. In these contexts, it is preferable to substitute all the 
mel-cepstrum coefficients in order to enhance the intelligibility 
of the speech. Therefore, we have defined a context-dependent 
strategy, in which the mel-cepstrum models are entirely 
substituted for some specific contexts. Since these contexts may 

vary from one patient to the other, we have designed a screening 
procedure in which the patients have to read out a set of 50 
sentences covering most of the phonetic contexts. Their speech is 
then assessed by a speech therapist in order to define the contexts 
for which the models are to be substituted. Finally, the context-
dependent and the component-wise model substitutions are 
combined in order to get the final version of the repaired voice. 
Ideally the voice donors used for the voice reconstruction should 
share the gender, age range and regional accent of the patient 
since these factors are likely to contribute to the characteristics 
of the voice. This is why we need to record a large number of 
healthy voice donors with a variety of age and regional accents, 
as presented in the next section. 

5. Database of Voice Donors 
One of the key elements of the voice-banking project is the 
creation of a catalogue of healthy voices with a wide variety of 
accents and voice identities. This voice catalogue is used to 
create the average voice models for the speaker adaptation and to 
select the voice donors for the voice reconstruction. So far we 
have recorded about 500 healthy voice donors with various 
accents (Scottish, Irish, Other UK). This database is already the 
largest UK speech research database. An illustration of the 
geographical distribution of the speakers’ birthplaces is shown 
on Figure 2. Each speaker has been recorded in a semi-anechoic 
chamber for about one hour using at each time a different script 
in order to get the best phonetic coverage on average. The 
database of healthy voices is first used to create the average 
voice models used for speaker adaptation. Ideally, the average 
voice model should be close to the vocal identity of the patient 
and it has been shown that gender and regional accent are the 
most influent factors in speaker similarity perception [14]. 
Therefore, the speakers are clustered according to their gender 
and their regional accent in order to train specific average voice 
models. A minimum of 10 speakers is required in order to get 
robust average voice models.  

 
Figure 2: UK-wide speech database.  

 
The healthy voice database is also used to select the voice donors 
for the model substitution process described in section 4. The 
voice donors are chosen among the speakers used to build the 
average voice model matched to the patient’s gender and accent. 
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We first build a speaker-adapted voice for each of these speakers 
using the same average voice model. The acoustic models used 
in HTS represent each stream of parameters separately. 
Therefore, a set of acoustic distances between speaker-adapted 
voices can be defined for each of these streams (duration, log-F0, 
band aperiodicity, mel-cepstrum). These distances are defined as 
the average Karhunen-Loeve (KL) distances [15] between the 
acoustics models associated to the same stream of parameters. 
Finally, a voice donor is selected for each stream separately, as 
the one that minimizes the average acoustic distance for this 
stream. 

6. Clinical Trial 
As part of the voice-banking project, we are conducting a clinical 
trial in order to assess and further refine the voice building 
process for patients with degenerative speech disorders. So far, 
more than 15 patients with MND have already been recorded and 
5 of them have been delivered a reconstructed voice. We present 
in the following sections a subjective assessment of the voice 
repair as well as the feedbacks from patients and their families. 
 

4.3. Subjective evaluation of the voice repair 
The substitution strategy presented in Section 4 was evaluated 
for the case of a MND patient. This patient was a 45 years old 
Scottish male that we recorded twice. A first recording of one 
hour (500 sentences) has been made just after diagnosis when he 
was at the very onset of the disease. At that time, his voice did 
not show any disorders and could still be considered as 
“healthy”. A second recording of 15 minutes (50 sentences) has 
been made 10 months later. He has then acquired some speech 
disorders typically associated with MND, such as excessive 
hoarseness and breathiness, disruption of speech fluency, 
reduced articulation and monotonic prosody. The synthetic 
voices used in this experiment are shown in Table 1. The same 
male-Scottish average voice model, denoted as  AV, was used to 
create all the synthetic voices. This average voice was trained on 
17 male Scottish speakers using 400 sentences each giving a 
total of 6800 sentences. The synthetic voice created from the first 
recording of the patient (“healthy” speech) was used as the 
reference voice for the subjective evaluations. This reference 
voice is referred to as HC. This choice of a synthetic voice as 
reference instead of the natural recordings was done to avoid any 
bias due to the loss of quality inherent to the synthesis. The 
reconstructed voice IR was obtained by applying the 
combination of the component-wise and context-dependent 
substitution strategies to the speaker-adapted voice IC build from 
the second recording of the patient (“impaired” speech). 
 
Voice Description 
AV Average voice used for speaker adaptation  
HC Speaker adapted voice of the “healthy” speech  
IC Speaker adapted voice of the “impaired” speech 
IR Reconstructed voice using the component-wise and 

context-dependent model substitutions 
Table 1: Voices compared in the evaluation tests 

 
In order to evaluate the effectiveness of the voice reconstruction, 
two subjective tests were conducted. The first one assesses the 
intelligibility of the synthesized voice and the second, the 
speaker similarity. The same 40 semantically unpredictable 

sentences [16] were synthesized for each of the 3 voices created 
from the patient’s recordings (see Table 1). The resulting 
synthesized samples were divided into 4 groups such that each 
voice is represented by 10 samples in a group. A total of 40 
native English participants were asked to transcribe the 
synthesized samples, with 10 participants for each group. Within 
each group, the samples were presented in random order for each 
participant. The participants performed the test with headphones. 
The transcriptions were evaluated by measuring the word error 
rate (WER). 
 

Voice Mean WER (%) std 
HC 26 12 
IC 53 18 
IR 36 16 

 
Table 2: Word Error Rate (mean, standard deviation) 

 
The same test sentence “People look, but no one ever finds it.” 
was synthesized for each of the 4 voices in Table 1. Participants 
were asked to listen alternatively to the reference voice HC and 
to the same sentence synthesized with the reconstructed voice IR 
and the average voice model AV. The presentation order of the 
voices being tested was randomized. Participants should rate the 
similarity between the tested voice and the reference HC on a 5-
point scale (1: Very dissimilar, 2: Dissimilar, 3: Quite Similar, 4: 
Very similar; and 5: Identical). However, the participants were 
not given further instruction in order to avoid biasing towards 
rating any specific form of similarity. A total of 40 native 
English speakers performed the test using headphones. 
 

Voice Mean Opinion Score std 
AV 2.05 1.05 
IC 2.61 1.21 
IR 3.09 1.34 

 
Table 3: Similarity to the reference voice HC on a MOS-scale 

(mean, standard deviation) 
 
The resulting average WERs for the intelligibility test are shown 
in Table 2. We are not interested here in the absolute values of 
the WER but in their relative values compared to the reference 
voice HC. As expected, the synthetic voice IC created from the 
“impaired” speech has a high WER, which means that the 
articulation disorders from the patient’s speech have degraded 
the intelligibility. The important result here is that the model 
substitution improves the speech intelligibility of the 
reconstructed voice IR. The results of the similarity test are 
shown in Table 3. A first interesting result is that the voice clone 
IC created by speaker adaptation from the “impaired” speech is 
more similar to the healthy clone HC that the average voice AV. 
In the case of this patient, this validates an implicit assumption 
of the voice reconstruction process: some valuable information 
about the original vocal identity should remain in the impaired 
speech. The other important result is the improvement of the 
average similarity scores when the model substitution strategies 
are applied. Between IR and AV, there is a mean improvement 
of 1 MOS (with a p-value << 1.e-5) and more surprisingly, there 
is also a significant improvement of 0.5 MOS (p-value << 1.e-3) 
between IC and IR. One explanation of this last result could be 
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that the similarity of vocal identity is better perceived once the 
disorders have been regulated.  

4.3. Feedback from patients and families 
The results presented in the previous section are relative to the 
only patient whose ‘healthy’ voice was available to establish a 
reference. However, it remains to be demonstrated that similar 
results could be achieved with different patients. It is also 
important to assess the usability of the reconstructed voice in real 
conditions of use. Therefore, we have conducted an experimental 
trial with 5 patients whose voices have been reconstructed and 
made available through an on-line server. These patients can use 
their reconstructed voices from any computer, tablet or mobile 
phone as long as an Internet connection is available. A simple 
web interface allows them to enter a text and a synthesis request 
is sent to a remote server. Once the synthesis is done on the 
server, the synthesized speech is sent to the device and played 
through its loudspeakers. The patients and their families were 
asked to give their feedback on the quality of the reconstructed 
voice after a few weeks of use. In particular, they were asked to 
assess the intelligibility of the voice and its similarity to the 
user’s voice before the start of the disease. We get 15 feedback 
in total corresponding to the 5 patients, their husbands/wives or 
their parents. The table 4 shows the mean opinion scores on a 5-
point scale (1 being the worst and 5 the best). These results are 
consistent with the subjective test presented in the previous 
section. It shows that the voice reconstruction process manages 
to remove most of the speech artifacts while retaining some of 
the voice characteristics of the patient. Most importantly, all the 
patients said they would rather choose their reconstructed voices 
over any commercially available synthetized voice. 
 

Question Mean Opinion Score std 
Similarity 3.5 0.7 

Intelligibility 4 1.1 
 

Table 4: Feedback from patients and families  
(mean, standard deviation) 

7. Conclusions 
For VOCA users, speech synthesis is not an optional extra for 
reading out text, but a critical function for social communication 
and identity display. Therefore, there is a great need for 
personalized VOCAs as the provision of personalized voice is 
associated with greater dignity and improved self-identity for the 
individual and their family. In order to build personalized 
synthetic voices, attempts have been made to capture the voice 
before it is lost, but for some patients, the speech deterioration 
frequently coincides or quickly follows diagnosis. In such cases, 
HMM-based speech synthesis has two clear advantages: speaker 
adaptation and improved control. Speaker adaptation allows the 
creation of a synthetic voice with a limited amount of data. Then 
the structure of the acoustic models can be modified to repair the 

synthetic speech. In this paper, we have presented the results of 
an on-going clinical trial based on this new approach. The 
subjective evaluations and the feedback from the patients show 
that it is possible to build a synthesized voice that retains the 
vocal identity of the patient while removing most of the speech 
disorders. Although these results are presented for MND 
patients, the principle of the voice building and reconstruction 
process could be easily generalized to any other degenerative or 
acquired speech disorder. 
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Abstract
This work examines the use of a low-power Wireless Acous-
tic Sensor Network (WASN) for the observation of clinically
relevant activities of daily living (ADL) (e.g. eating, personal
hygiene, toilet usage, etc.) from elderly. The sensors used in
the WASN are both audio and ultrasound receivers. To the
best of our knowledge, the combination of audio and ultrasound
as a basis for ADL monitoring has not been investigated yet.
This paper describes a baseline approach for ADL classifica-
tion based on Gaussian mixture models. Preliminary results in
this work indicate that classification accuracies up to 85.0 %
± 14.6 for audio and 61.7% ± 11.3 for ultrasound are already
achievable on realistic real-life recorded data.
Index Terms: acoustic scene analysis, audio, ultrasound,
acoustic scene classification, activities of daily living, automatic
monitoring

1. Introduction
Because of the retirement of the baby-boom generation and
the increasing life expectation, the ratio of dependent elderly
to working people is rising sharply. Research predicts that in
2020, 19% (extrapolated to 26% in 2060) of the Belgian pop-
ulation will be older than 65 years [1, 2]. This aging brings
important challenges for our society. One of these challenges
is to facilitate a safe functioning of elderly people in their own
home environment. Even solutions which only allow a small ad-
ditional fraction of care-requiring elderly to live longer safely at
home, for a reasonable investment, make economical sense.

The functioning of elderly at home is often limited by un-
derlying physical or cognitive dysfunctions, which are often the
cause of diseases. Nowadays, these changes in functioning are
often unrecognized, or recognized too late. One of the reasons
for under-detecting these changes is that they are often mini-
mal and not noticed or ignored by the patient or family. Still,
early detection could lead to early intervention and prolong the
possibility to live safely at home. As technological support, a
monitoring system aims to detect and analyze relevant changes
and create a safe environment to the elderly at home. More
specifically, the aim of this research is to provide the caregiver
objective information, compiled in a summary report, concern-
ing the daily activities of the elderly.

The present solutions found in the literature can be split
into two main categories based on the type of sensors used. A
first category requires the use of sensors that make contact with

the human body such as Radio Frequency Identification (RFID)
readers [3, 4, 5], accelerometers [6, 7, 8, 9, 10] and gyroscopes
[11]. A second category uses contact-less sensors. These have
the advantages over wearable sensor systems in that they do not
affect the normal behavior of the users, do not require human
interaction (e.g. such as a push button system), and cannot be
forgotten to wear. In [12] a survey of different approaches to
detect human activities using video images is discussed. Aside
video cameras also other contact-less sensors were explored in
this context such as infra-red sensors [13], door contacts [13],
radars [14], sensors for monitoring the use of domestic utilities
[13, 15, 16] and microphones [17, 18, 19, 20, 21]. Compared
to the other modalities, acoustic (specifically audio) technology
has received little attention. Few research groups have consid-
ered using daily living acoustics in their systems.

Our research investigates the use of a wireless acoustic sen-
sor network (WASN) that extracts information from both the
audio and ultrasound frequency range. Such networks contain
multiple so-called nodes each holding one or more acoustic sen-
sors. These WASNs have advantages over other kinds of se-
tups. For instance, the nodes can be small while maintaining
large spatial sampling [22]. The nodes can be placed in a room
without inconvenient cables, which is a desirable property in
a home environment. Additionally, the workload (which can
be significant) can be distributed among nodes so that cheaper
hardware can be selected [22]. A WASN allows to estimate the
source position from the acoustic signal and increase the qual-
ity of the recorded signals through spatial filtering [22, 23]. To
our knowledge such a WASN setup that extracts acoustic in-
formation from audio and ultrasound signals for the purpose
of home monitoring has not yet been reported in the literature.
Aside the clinically relevant information that is present in the
audio frequency range it is also investigated which useful infor-
mation could be extracted from the ultrasonic frequency range.
More in detail, it will be examined if typical ADLs (e.g. eat-
ing, personal hygiene, walking, etc.) can be detected and rec-
ognized in the ultrasound spectrum. The combination of audio
and ultrasound might have the following advantages over ex-
isting contact-less alternatives: a) occlusions might have less
impact compared to a video-based system, b) less processing
power might be needed compared to video-based approaches,
c) ultrasound and audio signals might provide complementary
information, d) is expected to be easily integrated with dialog
systems (notably for virtual assistants or robots), with emer-
gency and security systems (mainly fall detection and distress
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situation recognition), is expected to be augmented with human
machine interaction (e.g. voice commands, conversational sys-
tems), e) can be extended with ultrasound transmitters which
allows to estimate object distances to detect changes in the liv-
ing environment.

This paper describes a baseline architecture for daily ac-
tivity observation via audio and ultrasonic measurements and
discusses the preliminary results obtained on realistic real-life
recorded data. The work will serve as a starting point for fur-
ther improvements of the classification accuracy and required
annotation efforts for model estimation.

In section 2 we will briefly discuss the used experimental
setup. Topics such as hardware configuration, living environ-
ment, and the performed Activity of Daily Living (ADL) sce-
narios will be clarified. Section 3 describes the baseline system
architecture and clarifies a functional block diagram of the pro-
posed solution. Section 4 discusses the feature extraction pro-
cess and how these features are implemented in a classifier. The
conducted experiments and obtained results are presented and
clarified in section 5. In Section 6 the findings will be discussed
and is followed by the conclusions in Section 7.

2. Experimental setup
2.1. Hardware

The acoustic sensor network used during the recordings con-
sisted of two different types of nodes, i.e. audio and ultrasound,
and are briefly explained in the following two paragraphs.

Each audio node was equipped with three linearly spaced
electret microphones with an inter-sensor distance of 6.8 cm.
The microphone signals are sent to preamplifiers with a cut-off
frequency of 20 kHz to improve the signal level.

The ultrasound node consisted of three 40 kHz centered ul-
trasound receivers with an inter-sensor distance of 10 cm. Next,
the captured ultrasound spectrum is downshifted to the audi-
ble frequency range to make it recordable with standard audio
hardware. The latter is done by analog mixing the ultrasound
signal with a square block wave of 31.5 kHz which results into
a transformed center frequency of 8.5 kHz. Next, the down-
shifted signal is filtered by a 10 kHz low pass filter to cancel out
the higher order harmonic product terms. The motivation for
downshifting to a center frequency of 8.5 kHz instead of direct
to DC (and using a square wave of 40 kHz) is merely because
it is expected that the lower ultrasound frequencies (range from
31.5 till 40 kHz) also contain valuable information.

All captured acoustic signals were recorded using a 4 chan-
nel 24-bit soundcard sampling at 32 kHz. Each soundcard ad-
ditionally recorded a reference signal that was received from a
single transmitter through a RF channel. These reference sig-
nals were used for the purpose of off-line synchronization of
the different inter node channels as described in [24].

2.2. Living environment

The domestic environment used in this work was a room of size
6 m by 4 m with a combined kitchen and living space as shown
in Figure 1. Each of the 4 corners was equipped with an au-
dio node to ensure full coverage of the acoustic sensor network.
Additionally, the use of multiple node reduces the maximum
possible distance between source and node and thereby increas-
ing the SNR of the received signals as well. In contrast with
the audio nodes, only a single ultrasound node was available
for installation in the domestic environment. The most suitable
position for this node with respect to the maximum possible

Figure 1: Floor plan of the domestic environment.

coverage was the the corner in the living room.

2.3. Recording scenario and data

The collection of audio and passive ultrasound data from clin-
ically relevant domestic events is required to analyze and ex-
plore the proposed observation system. Therefore, during this
data collection session eight different people performed some
typical ADLs over a time span of three days in the domestic en-
vironment. Table 1 gives an detailed overview of the collected
data in terms of both audio and ultrasound.

Table 1: A detailed overview of the collected audio and ultra-
sound data.

Activity class Number of
examples

Recording Duration
(minutes)

Cooking and eating 7 287.01
Reading 2 22.04
Using laptop 2 21.16
Vacuum cleaning 4 34.15
Walking around 6 59.12
Watching TV 3 73.44

3. System architecture
The proposed system architecture is shown in Figure 2. Each
node first estimates whether or not the input contains acoustic
information by using a sound activity detector (SAD). Since a
wide range of acoustics can be useful in recognizing an activ-
ity it is difficult to select a certain model-based sound activity
detector. Therefore, a simple energy based threshold is imple-
mented as SAD. First each sample is squared and thresholded.
Then a hangover scheme labels each sample within 25 ms of a
sample which passed the threshold as a positive detection. If
acoustic information is detected, the raw waveform data will
be further processed into acoustic and position features (as de-
scribed in 4.1 and 4.2). Both acoustic and position features are
calculated on 25 ms blocks of data with a time shift of 10 ms.
The SAD is also used to estimate the signal-to-noise ratio (SNR)
at which the acoustic information is received. Only this low di-
mensional information (SNR, acoustic and position features) is
sent to a central processor. This strategy reduces the necessary
bandwidth and power consumption.

The central processor combines the position features of all
nodes and only selects the acoustic features from the micro-
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Figure 2: Block schematic of system architecture.

phone that receives the acoustic signal with the highest SNR.
Once the features are combined, these will form the basis for
the training and testing phase. It is worth mentioning that Fig-
ure 2 depicts a simplified architecture. In practice the block
node selection will notify each node whether or not its acous-
tic features are needed such that no unnecessary CPU time nor
bandwidth will be wasted.

4. Feature extraction and modeling
As discussed in previous sections, this work aims to reveal
ADLs from the associated acoustic information. In order to
optimize the classification objective, the raw stream of acous-
tic data is transformed into more consistent features. Therefore,
two types of features will be extracted from collected sensor
data, i.e. acoustic source localization features and acoustic fea-
tures. It is expected that these two feature sets contain comple-
mentary information which will boost the classification perfor-
mance. For instance, running water detected in the bathroom is
more associated to personal hygiene than to cooking.

4.1. Acoustic features

Most of the presently available acoustic feature extraction ap-
proaches find their origin in speech applications and are often
based on the properties of human speech production and per-
ception. A well-known and often used feature extraction ap-
proach in the domain of speech- and speaker recognition appli-
cations are the so-called Mel-Frequency Cepstral Coefficients
(MFCCs) [25]. Despite the fact that MFCCs are initially de-
veloped for speech applications, research indicates that MFCCs
are also a successful choice for processing non-speech acous-
tic signals as well [26, 27]. Therefore, this work will use the
MFCC approach as a baseline for computing the acoustic fea-
tures from the collected audio data. The feature extraction pro-
cess for the downshifted ultrasound signals is slightly different.
Here, linearly spaced filter banks make more sense since there
is no reason to assume that the frequency resolution should be
significantly different at the low versus the high end of the spec-
trum. This changes the Mel-Frequency Cepstral Coefficients
into a linear alternative which is denoted as Linear-Frequency
Cepstral Coefficients (LFCCs) [28].

Both the MFCC- and LFCC-features will be extracted us-
ing the same parameter setting. Literature indicates that win-
dow sizes of 25 ms with an overlap of 10 ms are typically used
[25]. The number of filterbanks is set to 40. The filtering op-
eration is followed by a 13th order Discrete Cosine Transform.
Finally, the ∆ and ∆∆ are computed and added as acoustic fea-

tures. This leads into a 42-dimensional acoustic feature vector
for both audio and the downshifted ultrasound. Finally, each
feature dimension is normalized by applying a standard mean
and variance normalization algorithm.

4.2. Position features

Since sound travels at a finite speed, information about the di-
rection of arrival (DOA) can be found in the time differences of
arrival (TDOA) between different microphones in a node. The
most simple way of measuring a TDOA is by a cross correla-
tion, but this approach has a time resolution of a single sam-
pling period. This problem can be resolved by using the so-
called steered response power (SRP) algorithm [29]. SRP is
based on a delay and sum beamformer, which is steered in mul-
tiple directions at once (ranging from -90◦to +90◦with a reso-
lution of 2◦) for one block of data and measures the retrieved
energy in each direction. In this work, an enhancement on SRP
is used, namely SRP phase transform (SRP-PHAT). PHAT ba-
sically pre-transforms the microphone frames to have an unity
spectral density. This operation decorrelates the different mi-
crophone signals over time, making the directional energy peaks
corresponding to a source narrower. The SRP-PHAT algorithm
is described further in [29].

SRP-PHAT finally produces 91 points of the directional en-
ergy curve per node. These points were not directly used as fea-
tures for the classification model. Since only a limited amount
of training data was available it is desirable to keep the feature
space low dimensional. Therefore, it was chosen to split-up the
directional energy curve into two regions with broadside as the
boundary. The energy in each region was integrated and the re-
sulting two measures were combined into a single feature per
node by taking the logarithmic ratio. The logarithm is taken to
reshape the ratio intervals from ]0, 1] and [1,∞[ to ]−∞, 0] and
[0,∞[ to equalize the importance of both sides. Despite the re-
sulting low resolution, using a combination of nodes allows to
partition the living environment into several areas. Therefore,
the position feature vectors used for the classification model
are formed by concatenating the node specific position features.
This differs from the acoustic features where only features from
a single node are selected.

4.3. Gaussian Mixture Models

ADLs are classified by training a GMM with diagonal covari-
ance per class. A sequence of feature vectors, possibly originat-
ing from multiple nodes and from both modalities, is assigned
to the class that produces the maximal log-likelihood. In earlier
work on similar problems [30], it was found that classification
accuracy did not depend critically on the number of mixture
components in the range from 5 to 20. For parsimony, five mix-
ture components were used.

5. Experiments and results
Due to the limited amount of training data, a 10-fold cross-
validation approach was used to evaluate the classification per-
formance of the proposed system. The data was not first per-
muted before partitioning to leave the acoustic variation be-
tween training and validation partition as realistic as possible.
In order to preserve the class balance in training- and validation
set, each activity class was first partitioned into 10 folds fol-
lowed by the combination of corresponding class specific folds.
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5.1. Audio based ADL classification

The first conducted experiment in this work analyzes the au-
dio based classification performance of the sensor network. In
order to examine the additional value of the position informa-
tion in terms of classification accuracy this experiment is car-
ried out twice, i.e. once without and once including the position
features. The corresponding confusion matrices are shown in
Table 2 and Table 3 respectively. As one can see, promising
results are obtained. The obtained average accuracy is 81.7 %
± 14.6 when only the acoustic features are taken into account.
This value increases by 3.3 % to an average accuracy of 85.0
% ± 14.6 when the position information is added as a feature.
The following observations can be made by analyzing the cor-
responding confusion matrices more in detail:

1. The ADL Cooking and eating, Vacuum cleaning, and
Watching TV have the best classification results. This
is easy to comprehend because: 1) these activities are
characterized by their own typical recurring characteris-
tic acoustic information and 2) the energy of the acoustic
sounds in these events is sufficiently high which results
into higher SNRs.

2. The increase in accuracy by adding position informa-
tion is due to the higher classification results obtained
at Reading and Walking around. For these activities, the
energy in the acoustic waves is low (e.g. page turn or a
footstep) making the acoustic features unreliable.

Table 2: Confusion matrix of the obtained audio classification
results without the position information.

C
la

ss
ifi

ed
la

be
l:

C
oo

ki
ng

an
d

ea
tin

g

R
ea

di
ng

V
ac

uu
m

cl
ea

ni
ng

W
al

ki
ng

ar
ou

nd

W
at

ch
in

g
T

V

W
or

ki
ng

la
pt

op

True label:
Cooking and eating 9 - - 1 - -
Reading 1 5 - 3 - 1
Vacuum cleaning - - 10 - - -
Walking around 2 - - 7 - 1
Watching TV - - - - 10 -
Working laptop - 1 - 1 - 8

5.2. Complementarity of audio and ultrasound

This experiment examines the complementarity of the audio and
ultrasound signals. As discussed in section 2, only 1 ultrasound
node was placed in the domestic environment. Therefore, in
order to have a fair comparison between both modalities only
the audio data from the corresponding audio node is used in
this experiment. This differs from 5.1 where the node selection
depends on the node’s SNR.

Table 4 and 5 represent the obtained audio and ultrasound
results. The average accuracy of the audio classification drops
to 81.7% ± 12.3, as expected. The average score of ultrasound
is 61.7% ± 11.3 which is lower than that when using audio but
still very promising. By analyzing the results more in detail the
following conclusions can be made:

Table 3: Confusion matrix of the obtained audio classification
results when the position features are included.
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True label:
Cooking and eating 9 - - 1 - -
Reading 1 6 - 3 - -
Vacuum cleaning - - 10 - - -
Walking around 1 1 - 8 - -
Watching TV - - - - 10 -
Working laptop - - - 2 - 8

1. Also in the ultrasound modality, the ADLs Cooking and
eating, Vacuum cleaning, and Watching TV have the best
accuracy. For these, the same explanation as in 5.1 is
valid.

2. The classification accuracy of the activities Reading and
Working laptop with the down-shifted ultrasound signals
is inferior to the performance when using the audio data.
Listening to the recording confirms that these activities
are harder to recognize from the ultrasound recordings
than from the audio recordings.

3. Ultrasound signals will be more attenuated than audio
over a same distance since the attenuation of acoustic
waves depends on the frequency [29]. This in combi-
nation with a sub-optimal ultrasound node (i.e. analog
downshifting introduces a significant amount of noise)
makes the ultrasound part of the sensor network less sen-
sitive compared to audio and thereby also affecting the
results.

Table 4: Confusion matrix of the obtained audio classification
accuracies (only the acoustic and position features from the
audio node corresponding to the ultrasound node position is
used).
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True label:
Cooking and eating 9 - - 1 - -
Reading 1 5 - 3 - 1
Vacuum cleaning - - 10 - - -
Walking around 1 1 - 8 - -
Watching TV - - - - 10 -
Working laptop - - - 3 - 7
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Table 5: Confusion matrix of the obtained ultrasound classifi-
cation results (position features included).
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True label:
Cooking and eating 10 - - - - -
Reading - 0 - 2 8 -
Vacuum cleaning - - 10 - - -
Walking around - - - 6 4 -
Watching TV - - - 1 9 -
Working laptop - - - 3 5 2

Table 6 shows the confusion matrix of the classification re-
sults when audio and ultrasound are combined. The latter is
done by summing the audio an ultrasound class posteriors to-
gether. The obtained average classification score is 80.0% ±
10.5 which is slightly less accurate compared to the audio re-
sults from Table 4 but nevertheless still promising.

Table 6: Confusion matrix of the combination audio and ultra-
sound.
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True label:
Cooking and eating 10 - - - - -
Reading - 4 1 3 1 1
Vacuum cleaning - - 10 - - -
Walking around - 1 1 6 - 2
Watching TV - - - - 10 -
Working laptop - - - 2 - 8

6. Discussion
The preliminary results in Section 5 indicate promising ADL
classification results for both the audio and ultrasound modali-
ties. Although the ultrasound based classification results were
inferior to those obtained using audio data, one must be careful
before drawing conclusions.

1. The SNR of the ultrasound signals was significantly
lower than that of the audio signals. Further investiga-
tion is required to check which hardware improvements
can be used to increase the SNR.

2. Although a simple combination of both the audio and
ultrasound modalities resulted in a decrease of over-
all performance, other types of combination, such as
a class-dependent weighted combination of both out-
comes, might be more successful.

Therefore, future work will focus on the development of
more sensitive and less-noisy ultrasound nodes and the optimal

integration of both modalities with respect to the classification
performance of the WASN. Moreover, the added value of ac-
tive observation will be investigated as well by extending the
sensor network with ultrasound transmitters. This can lead to
a better observation of dynamic ADLs (e.g. walking around)
and thereby can also lead to an improved overall classification
accuracy.

Furthermore, real-life data collection sessions over a longer
time span in homes of elderly living alone are also planned
in the near future. This allows the creation of larger acoustic
datasets which will improve the estimation of acoustic models.

7. Conclusions
This work presents a distributed acoustic sensor network for the
observation of activities of daily living from elderly on the basis
of the corresponding audio and ultrasound data. The baseline
system that is proposed was validated on realistic real-life data
that was recorded in a domestic environment equipped with a
prototype of the sensor network. The conducted classification
experiments on the acquired data revealed promising prelimi-
nary classification accuracies, i.e. 85.0 % ± 14.6 and 61.7%
± 11.3 for audio and ultrasound respectively. Combining both
modalities by posterior summation did not yield an improve-
ment over the audio-only modality. Other classifier combina-
tion methods will be studied in the near future. Despite these
promising preliminary results, further work on a larger scaled
dataset collected with multiple and more sensitive ultrasound
nodes is required to increase the significance of the obtained
results.
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Abstract 
Although still in experimental stage, articulation-based silent 
speech interfaces may have significant potential for facilitating 
oral communication in persons with voice and speech 
problems. An articulation-based silent speech interface 
converts articulatory movement information to audible words. 
The complexity of speech production mechanism (e.g., co-
articulation) makes the conversion a formidable problem. In 
this paper, we reported a novel, real-time algorithm for   
recognizing words from continuous articulatory movements. 
This approach differed from prior work in that (1) it focused 
on word-level, rather than phoneme-level; (2) online 
segmentation and recognition were conducted at the same 
time; and (3) a symbolic representation (SAX) was used for 
data reduction in the original articulatory movement time-
series. A data set of 5,900 isolated word samples of tongue and 
lip movements was collected using electromagnetic 
articulograph from eleven English speakers. The average 
speaker-dependent recognition accuracy was up to 80.00%, 
with an average latency of 302 miliseconds for each word 
prediction. The results demonstrated the effectiveness of our 
approach and its potential for building a real-time articulation-
based silent speech interface for clinical applications. The 
across-speaker variation of the recognition accuracy was 
discussed. 

Index Terms: silent speech recognition, laryngectomy, 
support vector machine, SAX, time-series 

1. Introduction 
Persons who lose their voice after laryngectomy (a surgical 
removal of the larynx due to the treatment of cancer) or who 
have speech impairment struggle with daily communication 
[1]. In 2012, more than 52,000 new cases of head and neck 
cancers (including larynx, pharynx, etc.) were estimated in the 
United States [2]. Currently, there are only limited treatment 
options for these individuals, which include (1) “esophageal 
speech”, which involves oscillation of the esophagus and  can 
be difficult to learn; (2) electrolarynx, which is a mechanical 
device resulting in a robotic-like voice; and (3) augmented and 
alternative communication (AAC) devices (e.g., text-to-speech 
synthesizers operated with keyboards), which are limited by 
slow manual text input [1]. New assistive technologies are 
needed to provide a more efficient oral communication mode 

with natural voice for those individuals. 
Silent speech interfaces (SSIs), although still in early 

development stages [3] (e.g., speaker-dependent recognition, 
small-vocabulary, devices are not ready for clinical use), may 
provide an alternative interaction modality for persons with 
voice and speech problems. The common purpose of SSIs is to 
convert non-audio articulatory data to text that drives a text-to-
speech (TTS) synthesizer (e.g., [4]) (see Figure 1 for a 
schematic of our SSI design). Potential articulatory data 
transduction methods for SSIs include ultrasound [5, 6], 
surface electromyography electrodes [7, 8], and 
electromagnetic articulograph (EMA) [9, 10, 11]. The current 
project used EMA, which registers the 3D motion of sensors 
adhered to the tongue and lips. 

One major challenge for building effective SSIs is 
developing accurate and fast algorithms that recognize words 
or sentences based on articulatory data (i.e., without audio 
information). Articulatory data have been successfully used to 
improve the accuracy of voiced speech recognition from both 
healthy talkers [12, 13] and neurologically impaired 
individuals [14]. This typically involves the use of articulatory 
features (AFs), which include lip rounding, tongue tip 
position, and manner of production, for example. Phoneme-
level AF-based approaches have typically obtained word 
recognition accuracies less than 50% [13] because articulation 
can vary significantly within those categorical features 
depending on the surrounding sounds and the speaking context 
[15]. 

These challenges in phoneme-level recognition motivate a 
higher unit level of articulatory recognition, for example, 
word-level or sentence-level. Although sentence-level 
recognition accuracy is high [9], it lacks the scalability of 
phoneme- and word-level recognition because all sentences 
are required to be known prior to prediction. Word-level 
recognition may have better scalability than sentence-level 
recognition and the potential for higher accuracy than 
phoneme-level recognition. Word-level recognition from 
acoustic data has outperformed monophone recognition by 
approximately 25% [16, 17]. However, whole-word 
recognition has rarely been investigated in articulatory data 
probably due to logistic difficulty of collecting articulatory 
data [10, 11]. 

Online word recognition from continuous articulatory 
movements can be extremely challenging because word 
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boundaries (onset and offset) are difficult to identify. Recent 
works have shown offline word classification (word 
boundaries are known) accuracy can be greater than 90% for a 
small vocabulary [10, 11]. However, because of word 
segmentation issues, online recognition accuracy can be 
significantly lower than offline classification accuracy. Online 
word segmentation based on articulatory movements has 
rarely been attempted [18]. A threshold (e.g., 2 SD) of the 
articulatory movements has been successfully used for isolated 
word datasets [19, 20]. Such amplitude-based segmentation 
may not be well suited for words produced in a continuous 
sequence because of co-articulation (illustrated in Figure 1) or 
for words within sentences (connected speech). Co-articulation 
is an effect characterized by a sound is affected by its adjacent 
sounds [21, 22]. 

Figure 2 illustrates the articulatory movements for a word 
sequence with co-articulation produced by one of the 
participants. The top panel shows the continuous motion of 
sensors (y and z coordinates, where y is vertical and z is front-
back) attached on the tongue and lips. T1, T2, T3, and T4 are 
four sensors attached on the midsaggital line of the tongue, 
from tip to back; UL is upper lip; LL is lower lip. Details of 
the coordinate system and the labels of the sensors are 
provided in Section 4. The bottom panel shows the 
synchronously recorded audio.  

The goal of this project was to investigate word 
recognition from continuous articulatory movements. A novel, 
real-time algorithm for word recognition from continuous 
stream of articulatory movements has been recently proposed 
[10]. The algorithm was designed to solve the online 
segmentation and recognition problems simultaneously. The 
algorithm is characterized by the following: recognition is at 
the word level rather than the phoneme- or sentence-level; 
recognition employs a dynamic thresholding technique based 
on patterns in the probability change returned by a classifier; 
and the algorithm is extensible (i.e., it can be embedded with a 
variety of classifiers). The algorithm has been tested on the 
minimally processed articulatory movements [10]. Although 
the results were promising (missing only 1.93 words on a 
sequence with twenty-five words), false positives caused a 
relatively low overall accuracy. 

The current project implemented the following three 
strategies for improving word recognition accuracy: (1) using 
symbolic aggregation approximation (SAX) representation to 
reduce the local variation in the original articulatory 
movement time-series data, (2) adding a look-back strategy to 
handle a situation in which two words are so close that the 
onset of the second word may not be accurately identified, and 
(3) using speaker-dependent thresholds to determine the word 
candidates during online recognition. A phonetically-balanced 

and isolated word dataset of tongue and lip movements was 
collected using electromagnetic articulograph and used to 
evaluate the effectiveness and efficiency of the improved 
algorithm.   

2. Design & Method 
The design of our articulation-based silent speech interface is 
illustrated in Figure 1, which contains three major components 
[9, 10]: (a) data acquisition, (b) online (word) recognition, and 
(c) sound playback or synthesis. Data acquisition is performed 
using an electromagnetic articulograph that tracks the motion 
of sensors attached on a speaker’s tongue and lips. 

The focus of this paper is the second component, online 
word recognition, whose goal is to recognize a set of isolated 
words from continuous articulatory data (without using audio 
data). The core recognition problems are to (1) convert a time-
series of spatial configurations of multiple articulators to time-
delimited words, and (2) identify the onset of those recognized 
words. Here, a spatial configuration is an ordered set of 3D 
locations of the sensors. In this whole-word recognition 
algorithm, segmentation and identification are conducted 
together in a variable-size sliding window. The algorithm is 
based on the premise that a word has its highest matching 
probability given an observation window with an appropriate 
starting point and width. A trained machine learning classifier 
that derives these matching probabilities is embedded into the 
algorithm, as described in the rest of this section. In the future, 
this algorithm will serve as the recognition component of our 
articulation-based SSI. 

2.1. Symbolic representation of articulatory time-
series data  

SAX is a symbolic representation technique [23] that has been 
widely used in time-series data pattern analysis (e.g., [24, 25, 
26]). The main idea of SAX is to represent the original time-
series amplitude using discrete symbols that can still capture 
the patterns. The potential benefits of SAX are (i) efficient 
dimensionality reduction while retaining essential features; 
and (ii) lower bounding of the distance measure on the original 
series. To our best knowledge, however, SAX has not been 
used for articulatory movement time-series data analysis. 

The underlying contention behind representing the tongue 
motion data in the form of symbols is to capture the motion 
pattern for a particular word and to reduce the local variation.  
If the motion trajectory can be captured in terms of symbols 
that represent different regions in the motion distribution 
space, then the symbolic representation should reduce the 
amount of data required while overcoming local variations and 
scaling effects, thus may enable efficient comparison of the 

  
Figure 1. Three-component design of the articulatory movement-based silent speech interface. 
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motion data of different words with a higher accuracy. 
In this study, SAX symbolic representation was used to 
discretize the tongue and lip motion time series data. In SAX, 
each time sequence is z-normalized (mean = 0 and SD = 1), 
and split into w equal segments. For each segment, the mean is 
calculated and a symbol is assigned based on a set of 
breakpoints that divide the distribution space into α 
equiprobable regions, where α is the alphabet size. When α is 
given, the breakpoints (that separate the space to α regions) are 
definite. For the definition of breakpoints, please refer to [23].  
Thus, each time subsequence is converted into a string of 

length w, formed by symbols from an alphabet of size α.  Both 
the length w and the alphabet size α are pre-specified.  
Theoretically, an optimal combination of the two parameters – 
w and α – should be able to efficiently represent the variation 
in the sequences of any given time series data. Figure 3 
illustrates how a time-series is converted to string of symbols 
(using w = 5, and α = 6). 

In this project, however, a word sample contains multiple 
time sequences, multi-dimensional coordinates (y and z) from 
multiple sensors. The following procedure was used to convert 
a data sample of original articulatory movement data to a 
string of symbols. The original data captured from all sensors 
was first time-normalized and amplitude shifted to have a 
mean of zero. These data arrays were then combined into a 
single-dimension data vector (with sequences of multi-
dimension data from multiple sensors). The data vector was 
then converted into a single SAX vector.  The reason for using 
concatenation of all sensor data (rather than converting on 
each sensor separately) to generate a single SAX vector is to 
preserve the relative variation in amplitude across sensors. 
Conversion to SAX reduced the data by a constant factor 
(number of data points for each sensor / w).  The SAX vectors 
were served as input to the training and testing phases of the 
recognition module.  

The optimal SAX parameters (w and α) needed to be 
determined before word recognition experiment could be 
conducted. Most of the words in our dataset were of the 
phonetic structure CVC (consonant-vowel-consonant) or 
CCVCC, thus, w = 5 was chosen as the length of symbol string 
for capturing the motion characteristics. A preliminary 
experiment was conducted to determine the best α value.  
Figure 4 gives the average word off-line classification 
accuracy across speakers for different α values (from 3 to 15), 
and w = 5. α = 6 resulted in the highest classification accuracy, 
and was thus used in the online recognition experiment, which 
will be described in the next two sub-sections. 

 
Figure 2.  Example of a sequence of tongue and lip movements (top panel) of twenty five words and synchronously 
recorded sounds (bottom panel). Labels of the tongue and lip sensors are described in text. The articulatory movement 
data was low-pass filtered (20 Hz). In the acoustic waveform panel, the numbers in blue above words are the actually 
occurrence time of that word.  

 
Figure 3. Example of a symbolic representation of 
articulatory movement time-series data using SAX; 
the blue curve is the z-scored vertical coordinate 
of tongue tip producing a word “job”; the red 
segments are the discretized results. The original 
articulatory time-series data are finally converted 
into a string of symbols “64123”.  
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2.2. Model training  
Support vector machine (SVM) [27], a widely used machine 
learning classifier, was used to recognize words in this project. 
SVMs are soft margin classifiers that find separating 
hyperplanes with maximal margins between classes in high 
dimensional space [28]. Model training was conducted by 
training a SVM using pre-segmented multi-dimension 
articulatory movement data from multiple sensors associated 
with known words. A kernel function is used to describe the 
distance between two data points (i.e., u and v in Equation 1). 
A radial basis function (RBF) was used as the kernel function 
in this experiment, where λ is an empirical parameter: 

||)||1exp(),( vuvuKRBF −−= λ              (1) 

Details of the implementation of SVM used in this experiment 
were described in [28].  

The training component was developed off-line before the 
SSI was deployed in a real-time application. Therefore, the 
time required to build the model is not a relevant problem. 
Rather, the time taken for a trained model to predict words is 
an important measure for evaluating real-time applications. To 
obtain a high speed in prediction, input data was minimally 
processed and converted to SAX symbols before being fed 
into the SVM. The sampled motion paths of all articulator 
were time-normalized to a fixed-width (SVMs require samples 
to have a fixed number of values) and concatenated as one 
vector of attributes. The vector was then converted to SAX 
symbols, which formed a word sample. To understand the 
improvement of using SAX itself, we compared the offline 
classification accuracy using SAX and using the minimally 
processed original time-series data (used in [10]). 

2.3. Online recognition 
A prediction window with variable boundaries was used to 
traverse the sequence of tongue and lip movement data to 
recognize words and their locations (onset) within the window 
based on the probabilities returned by LIBSVM, which 
extends the generic SVM by providing probability estimates 
transformed from SVM decision values [28]. The SVM was 
trained offline using pre-segmented articulatory movement 
data. Pseudo-code of the original whole-unit recognition 
algorithm is provided in [9].  

The major steps of the improved word recognition 

algorithm are described as below. Steps 1 to 3 are for finding 
word candidates; Steps 4 to 6 are to verify those candidates; 
Step 7 is sound playback of recognized words. 

In Step 1 to 3 (Figure 5), word candidates are identified 
within the prediction window based on the probabilities 
returned from the trained SVM. At each time point t, all 
possible word lengths (within the length range of training 
words with a step size ∆t) are considered and the maximum 
probability is returned as the probability for time point t. The 
word length in our list ranges from 370 to 885 ms. The offset 
of the probability function varied considerably across words, 
which made it difficult to identify a sensitive candidate 
threshold. Therefore, the probability associated with each 
word was baseline-corrected by subtracting the average 
probability derived from the first 600 ms of the test sequence. 
Candidates are identified in a prediction window (represented 
by its left and right boundaries, wl and wr) when probability 
values exceed a candidate threshold (thresc). The candidate 
threshold was obtained empirically from training data. In the 
current experiment, a single constant threshold was used for 
all words (but varies for different subjects). In the future, each 
word will have its own threshold for each subject. In this 
speaking-dependent recognition experiment, the threshold 
varied slightly for different subjects (ranged from 0.30 to 
0.40).  

If no candidates are found in the current prediction 
window, wr moves forward (to get more data), and the process 
goes back to step 1, until wr ≤ wl + lmax, where lmax is the 
maximum word length in this data set. 

In Step 4, a candidate is verified based on probability 
change trend. If the probabilities for that word are decreasing 
in a time span of half of the minimum word length, implying 
ongoing decreases, the candidate is confirmed; otherwise, the 
decision-making is delayed. This strategy is to confirm a word 
right after the peak probability of the word happens, while the 
peak probability is unknown in online recognition. 

Look-back strategy. When the currently recognized word 
is very close to the next word, the location of wl may be 
erroneously located after the actual beginning of the next 

 
Figure 5. Schematic of the improved word recognition 
algorithm from continuous articulatory movement data. 

   
Figure 4. Average offline classification accuracy 
across speakers using different α values. 
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word.  This situation may cause error predictions, which was 
not considered in [10]. A look-back strategy was introduced to 
address this problem in this experiment (Step 5). A threshold 
threslook-back (> candidate threshold thresc) is defined first. 
When a word candidate was found at time tc with probability 
pc, if pc ≤ threslook-back, the window location before tc was saved 
as the candidate predicted time location, which means wl = wl 
– ∆t. In the current setting, wl takes at most one step back 
because two or more step size back is unlikely to happen in 
real articulatory movement data (otherwise the two words may 
have overlap). Also to avoid dead loop of the execution, this 
procedure executes at most once in the implementation of the 
algorithm. 

Time Location Constraint allows only one word to occur 
within each time span (Step 6). A time span must not be less 
than the minimum word length in the training data (i.e., 370 
ms). If more than one word candidate is found within a time 
span, only the one with the highest probability is retained in 
the recognized word list. 

In Step 7, after playing prerecorded audio samples of 
recognized words, the left boundary of the prediction window 
(wl) moves to wr. The whole procedure (Step 1 to 7) is 
repeated until the rightmost boundary of the prediction 
window (wr) reaches the end of the input sequence.  

2.4. Evaluation  
Recognition accuracy and processing time were used to 
evaluate the performance of the word recognition algorithm. 

A word prediction is correct if the expected word is 
identified within half a second of its actual occurrence time. 
That is, both missing values and wrongly predicted occurrence 
times are considered as errors. A false positive is a word that is 
recognized at a time point where there is actually no word.  
Figure 6 illustrates the word probability distribution on a 
selected sequence. In this example, all twenty-five words were 
correctly recognized. 

Two measures were used to evaluate the efficiency of this 
algorithm: prediction location offset (machine-independent) 
and prediction processing time, or latency (machine-
dependent). Prediction location offset was defined as the 
difference in location on a sequence between where a word is 
actually spoken and where it is recognized [29]. The 
prediction location offset provides an estimate of how much 
information is needed for predicting a word. Latency is the 
actual CPU time needed for predicting a word. 

3. Data Collection 

3.1. Participants and stimuli 
Eleven healthy native English speakers participated in data 
collection. Each speaker participated in one session in which 
he/she repeated a sequence of twenty-five words (i.e., one of 
the four phonetically-balanced word lists in [30]) multiple 
times.  

Subjects, who were blinded to the specific purpose of the 
research, were asked to pronounce the target words in their 
habitual speaking rate and loudness. Thus, the production 
contained co-articulation between adjacent words, although 
the co-articulation might not be similar to that in connected 
speech. 

3.2. Tongue motion tracking devices 
The electromagnetic articulograph (EMA) AG500 (Carstens 
Medizinelektronik GmbH, Bovenden, Germany) was used to 
collect the 3-D movement time-series data of the tongue, lips, 
and jaw for ten of the eleven participants. Wave Speech 
Research System (Northern Digital Inc., Waterloo, Canada) 
was used for the other participant. The two devices are based 
on the same electromagnetic tracking technologies [31, 32]. 
Both devices record tongue movements by establishing a 
calibrated electromagnetic field in a cube that induces electric 
current into tiny sensor coils that are attached to the surface of 
the articulators, and they have similar data collection 
procedure [33]. Thus, only the data collection procedure using 
EMA will be described in this paper (in Section 3.3). The 
spatial precision of motion tracking using EMA (AG500) and 
Wave are both approximately 0.5 mm [34, 35]. The sampling 
rate of the original data is 200 Hz for EMA AG500 and 100 
Hz for Wave, respectively. 

3.3. Procedure 
Participants were seated with their head within the calibrated 
magnetic field. Then sensors (pellets) were attached to the 
surface of each articulator using dental glue (PeriAcryl Oral 
Tissue Adhesive). The participants were then asked to produce 
the word sequences at their habitually comfortable speaking 
rate and loudness.  Before the beginning of actually data 
recording, a two-minute training and practice helped the 
participants to adapt to the wired sensors. Previous studies 
have shown these sensors do not significantly affect their 

 
Figure 6.  Example of probabilities (baseline removed) of twenty-five words on a test sequence. The dashed horizontal line is 
the probability threshold for word candidates. 
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speech output [36].  
Figure 7 (picture adapted from [37]) shows the positions of 

12 sensors attached to a participant’s head, face, and tongue 
[38, 39]. Three of the sensors were attached to a pair of 
glasses. HC (Head Center) was on the bridge of the glasses; 
HL (Head Left) and HR (Head Right) were on the left and 
right outside edge of each lens, respectively. The movements 
of HC, HL, and HR sensors were used to calculate the 
movements of other articulators independent of the head. Four 
sensors - T1 (Tongue Tip), T2 (Tongue Blade), T3 (Tongue 
Body Front) and T4 (Tongue Body Back) - were attached 
approximately 10 mm from each other at the midline of the 
tongue [38, 39, 40]. Lip movements were captured by 
attaching two sensors to the vermilion borders of the upper 
(UL) and lower (LL) lips at midline.  

Data from the four tongue sensors and the two lip sensors 
were used for this word recognition experiment. The 
movements of three jaw sensors, JL (Jaw Left), JR (Jaw 
Right), and JC (Jaw Center), were recorded for future use. 

3.4. Data preprocessing 
The time-series data of sensor locations recorded using EMA 
went through a sequence of preprocessing steps prior to 
analysis. First, the head movements and orientations were 
subtracted from the tongue and lip locations to give head-
independent measurements of the analysis variables. The 
orientation of the derived 3-D Cartesian coordinate system is 
displayed in Figure 7. Second, a zero phase lag low pass filter 
(i.e., 20 Hz) [10, 40] was applied for removing noise. Third, 
all sequences were manually segmented based on 
synchronously recorded audio data and annotated with words 
using a Matlab-based software called SMASH [33].  

Only y (vertical) and z (front-back) coordinates (see Figure 
7) of the six tongue and lip sensors (i.e., T1, T2, T3, T4, UL, 
LL) were used for this word recognition experiment because 
the movement along the x axis (left-right) is not significant in 
normal speech production [38, 41]. In the future, however, x 
dimension will be used for predicting speech articulated by 
individuals with laryngectomy or other speech disorders. The 
center of the magnetic field is the origin (zero point) of the 
EMA coordinate system. 

Error samples (e.g., mispronunciation or sensor falling off 
during the production) were rare and were excluded from the 

experiment. In all, 5,900 word samples (in 236 sequences) 
were obtained and used in this experiment.  

4. Results & Discussion 
Cross validation is a standard procedure to evaluate the 
performance of classification algorithms, where training data 
and test data are separate. Leave-one-out cross validation was 
conducted on the dataset from each subject in both training 
and online recognition, where one sequence (with twenty-five 
words) was used for testing and the rest of the sequences were 
used for training. 

4.1. Training accuracy 
The average training (offline classification) accuracy was 
94.01% using minimally processed articulatory data (used in 
[10]) and 96.90% using SAX transformed data in the current 
experiment. A paired t-test showed that the 2.89% 
improvement in accuracy was statistically significant (p < 
0.001). 

The experimental results demonstrated that SAX is 
effective in retaining the articulatory movement patterns while 
reducing the local variation. SAX may have potential for a 
greater improvement in classification accuracy for a larger 
vocabulary. 

4.2. Online recognition accuracy and processing 
time 

The average online recognition accuracy across all subjects 
was 80.00% (SD = 10.95%). More specifically, our algorithm 
failed to recognize 1.96 words (SD = 0.88) and generated 3.04 
(SD = 1.95) false positives in a sequence of twenty-five words. 
The average difference of correctly predicted word locations 
and their actual locations was 48 ms (SD = 9). The online 
word accuracy was improved up to 20%, compared with the 
performance of the original algorithm [10]. 

The average prediction location offset and latency were 
150 ms (SD = 68) and 302 ms (SD = 11) for a word 
prediction, respectively. Latency was measured on a PC with 
2.6 GHz dual-core CPU and 4GB memory.  

Table 1 summarizes the performance findings of the 
original and current algorithm [10]. During offline 
classification, the only difference between the original 

 
Figure 7.  Positions of sensors attached on the 
subject's head, tongue, lips, and jaw in data collection. 

Table 1.  Summary of the performances of current and 
the original algorithm. 

Measure The Original 
Algorithm 

The Current 
Algorithm 

Statistical 
Significance 

Offline 
Classification 

Accuracy 
94.01% 96.90% p < 0.001 

Online Missing 
Words  1.93 1.96  

Online False 
Positives 8.08 3.04 p < 0.001 

Online 
Recognition 

Accuracy 
60.00% 80.00% p < 0.001 
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algorithm and the current algorithm was the use of SAX and 
only a modest improvement in recognition was achieved. For 
online recognition, the current algorithm implemented not 
only SAX, but also a look-back strategy, and speaker-
dependent thresholds. This implementation improved overall 
accuracy by primarily reducing the number of false positives. 
Additional work, however, is needed to determine the 
individual benefit of each newly-added component (i.e., SAX, 
look-back strategy, and speaker-dependent thresholds).  

The high accuracy showed the effectiveness of our 
proposed algorithm to address the challenge in word 
recognition caused by co-articulation. The low prediction 
location offset and latency demonstrated the potential of our 
approach for real-time applications. The low standard 
deviations of the accuracy and other measures across subjects 
indicate that our approach can be applied generally with 
multiple subjects. 

4.3. Across-talker accuracy variation 
Although speech articulation is thought to vary across talkers 
[21], reports on this variability have been limited because most 
silent speech recognition or relevant studies have involved less 
than five participants.  

As reported previously, the standard deviation of the 
online word recognition accuracy across eleven subjects was 
10.95%, which is not surprising. To examine across taker 
differences in our study, the eleven subjects were grouped into 
four groups according to their word recognition accuracy, < 
70%, 70-80%, 80-90%, and ≥ 90%. Figure 8 shows the 
distribution of the subjects with regard to the word recognition 
accuracy. 18.18% of the subjects obtained an accuracy 
equivalent or greater than 90%; 36.36% obtained an accuracy 
greater than 80% but less than 90%; 27.27% obtained an 
accuracy between 70% and 80%; 18.18% obtained an 
accuracy less than 70%. In other words, 81.82% of the 
subjects obtained accuracy greater than 70%. It is notable that 
two of the participants had significantly lower recognition 
accuracies than the other nine participants, while the two 
participants had similarly high offline classification 
accuracies. Future work is required to determine the factors 
that account for across participant differences in recognition 
accuracy.  

4.4. Adaptability for real online recognition 
Our word recognition algorithm was designed for online 
recognition. In this experiment, the algorithm was tested using 
pre-recorded sequences of continuous articulatory movement 
data. That is, the algorithm was not tested in a real online 
recognition experimental setup. However, our experiment, to 
some extent, simulated online recognition. During the 
recognition, at time t, only data before (t + lmax) can be reached 
(lmax = 885 ms), which can be considered as an approximation 
of a real online recognition setting. Therefore, the word 
recognition algorithm used in this study should be well suited 
for real-time applications. Testing the algorithm in a real 
online recognition experimental setting is a next step. 

4.5. Limitations 
Although the results are very promising, there are a number of 
limitations of the current algorithm. First, quite a few 
parameters (e.g., candidate threshold, threshold for look-back, 
step size of the sliding window) need to be determined before 

online prediction, although they can be manually adjusted at 
the beginning (for example, candidate threshold). An 
automatic approach for determining the optimal parameters is 
needed before the silent speech recognition algorithm can be 
used in practice. 

Although the EMA and Wave are able to register 3D 
tongue motion accurately in real-time, and Wave is 
lightweight enough to be installed on a wheelchair, they may 
be still cumbersome in clinical use. An ideal or practical silent 
speech interface could be a handheld or a wearable device. 
Fortunately, the electromagnetic motion tracking technology is 
advancing rapidly. For example, devices that are wearable, and 
even with wireless sensors are being investigated (e.g., [11, 
42, 43]). Our algorithm that uses the sensor coordinates will be 
seamlessly embedded with those portable systems when they 
are ready for clinical use. 

5. Conclusions & Future Work 
Experimental results showed the potential of our word 
recognition algorithm for building an articulation-based silent 
speech interface, which can be used in command-and-control 
systems using silent speech and may even enable voiceless 
patients to produce synthetic speech using their tongue and 
lips.  

Although the current results are encouraging, future work 
is required to determine the optimal parameters (e.g., 
candidate thresholds) automatically for online recognition. In 
addition, the efficacy of alternative classifiers should be 
explored such as Hidden Markov Models [44, 45, 46], Fast 
DTW [47], Dynamic Bayesian Network [48], Random Forest 
[14]; the current design is easily adapted to classifiers that 
generate estimated probabilities associated with candidates.  
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Figure 8.  Distribution of talkers regarding to online 
recognition accuracy.  
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Abstract

We investigated the speech recognition of a person with an ar-
ticulation disorder resulting from the athetoid type of cerebral
palsy. The articulation of the first speech tends to become un-
stable due to strain on speech-related muscles, and that causes
degradation of speech recognition. In this paper, we introduce a
robust feature extraction method based on PCA (Principal Com-
ponent Analysis) and RP (Random Projection) for dysarthric
speech recognition. PCA-based feature extraction performs re-
ducing the influence of the unstable speaking style caused by
the athetoid symptoms. Moreover, we investigate the feasibil-
ity of random projection for feature transformation in order to
gain more performance in dysarthric speech recognition task.
Its effectiveness is confirmed by word recognition experiments.
Index Terms: articulation disorders, speech recognition, PCA,
random projection, ROVER

1. Introduction
Recently, the importance of information technology in the
welfare-related fields has increased. For example, sign language
recognition using image recognition technology [1][2][3], text-
reading systems from natural scene images [4][5][6], and the
design of wearable speech synthesizers for voice disorders [7]
[8] have been studied.

There are 34,000 people with speech impediments associ-
ated with articulation disorders in Japan alone, and it is hoped
that speech recognition systems will one day be able to recog-
nize their voices. One of the causes of speech impediments is
cerebral palsy. Cerebral palsy results from damage to the central
nervous system, and the damage causes movement disorders.
Three general times are given for the onset of the disorder: be-
fore birth, at the time of delivery, and after birth. Cerebral palsy
is classified as follows: 1) spastic type 2) athetoid type 3) ataxic
type 4) atonic type 5) rigid type, and a mixture of types [9].

In this paper, we focused on a person with an articula-
tion disorder resulting from the athetoid type of cerebral palsy.
Athetoid symptoms develop in about 10-15% of cerebral palsy
sufferers. In the case of a person with this type of articulation
disorder, the first movements are sometimes more unstable than
usual. That means, in the case of speaking-related movements,
the first utterance is often unstable or unclear due to the athetoid
symptoms, and that causes degradation of speech recognition.
Therefore, we recorded speech data for a person with an artic-
ulation disorder who uttered each of the words five times, and
investigated the influence of the unstable speaking style caused
by the athetoid symptoms.

The goal of front-end speech processing in ASR is to ob-
tain a projection of the speech signal to a compact parameter
space where the information related to speech content can be ex-

tracted. In current speech recognition technology, MFCC (Mel-
Frequency Cepstrum Coefficient) is being widely used. The fea-
ture is uniquely derived from the mel-scale filter-bank output by
DCT (Discrete Cosine Transform). The low-order MFCCs ac-
count for the slowly changing spectral envelope, while the high-
order ones describe the fast variations of the spectrum. There-
fore, a large number of MFCCs is not used for speech recogni-
tion because we are only interested in the spectral envelope, not
in the fine structure. In [10], PCA-based feature extraction has
been studied. Also, [11] proposed a robust feature extraction
method based on PCA instead of DCT in a dysarthric speech
recognition task, where the main stable utterance element is
projected onto low-order features while fluctuation elements of
speech style are projected onto high-order ones. Therefore, the
PCA-based filter will be able to extract stable utterance features
only (Fig. 1). The proposed method improved the recognition
accuracy, but the performance was not sufficient when com-
pared to that of persons with no disability.

Random projection has been suggested as a means of space
mapping, where a projection matrix is composed of the columns
defined by the random values chosen from a probability distri-
bution. In addition, the Euclidean distance of any two points
is approximately preserved through the projection. Therefore,
random projection has also been suggested as a means of dimen-
sionality reduction [12]. In contrast to conventional techniques
such as PCA, which find a subspace by optimizing certain cri-
teria, random projection does not use such criteria; therefore,
it is data independent. Moreover, it represents a computation-
ally simple and efficient method that preserves the structure of
the data without introducing significant distortion [13]. Goel et
al [13] have reported that random projection has been applied
to various types of problems, including information retrieval
(e.g., [14]), image processing (e.g., [15][16]), machine learning
(e.g., [17][18][19]), and so on. Although it is based on a simple
idea, random projection has demonstrated good performance in
a number of applications, yielding results comparable to con-
ventional dimensionality reduction techniques, such as PCA.

The main contributions of this paper are the following.
Firstly, we introduce a PCA-based feature extraction approach
to extract stable utterance features only. Secondly, PCA-based
features are projected using various random matrices. Then,
we use the same number of dimensions for the projected space
as that of the original space. There may be some possibility
of finding a random matrix that gives better speech recogni-
tion accuracy among random matrices, since we are able to
produce various RP-based features (using various random ma-
trices). Therefore, a vote-based combination method is intro-
duced in order to obtain an optimal result from many (infinite)
random matrices, where ROVER combination [20] is applied to
the results from the ASR systems created from each RP-based
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feature.
The rest of this paper is organized as follows. Section 2

describes a PCA-based feature extraction method. In Section
3, the proposed feature projection method using random or-
thogonal matrices, and, a vote-based combination method are
explained. Results and discussion for the experiments on a
dysarthric speech recognition task are given in Section 4. Sec-
tion 5, concludes the paper with a summary of our proposed
method, contribution, and future work.

1st utterance 2nd~5th utterances

Unstable because of 
athetoid symptoms

More stable than
1st utterance

adapt

Figure 1: Corrective strategy for articulation disorders.

Input
data

FFT Mel Log

PCA

DCT

proposed method

Figure 2: Feature extraction using PCA.

2. Feature extraction using PCA
Robust feature extraction was proposed based on PCA with the
more stable utterance data instead of DCT (Fig. 2), where PCA
is applied to the mel-scale filter bank output [11].

In this paper, we computed the filter (eigenvector matrix)
using the more stable utterance. Then we applied the filtering
operation to the first utterance (unstably articulated utterance) in
the log-spectral domain. Given the frame of short-time analysis
t and frequencyω, we represent the first utteranceYt(ω) as the
multiplication of the stable speechXt(ω) and the fluctuation
element of speaking styleH(ω) in the linear-spectral domain:

Yt(ω) = Xt(ω) · H(ω) (1)

The multiplication can be converted to addition in the log-
spectral domain as follows:

log Yt(ω) = log Xt(ω) + log H(ω) (2)

Next, we use the following filtering based on PCA in order to
extract the feature of stable speech only:

X̂ = VT Ylog (3)

For the filter (eigenvector matrix),V is derived by the eigen-
value decomposition of the centered covariance matrix of a sta-
ble speech data set, in which the filter consists of the eigenvec-
tors corresponding to theD dominant eigenvalues.

3. Proposed method
3.1. RP-based feature projection method

This section presents a feature projection method using random
orthogonal matrices. The main idea of random projection arises
from the Johnson-Lindenstrauss lemma [21]; namely, if origi-
nal data are projected onto a randomly selected subspace using
a random matrix, then the distances between the data are ap-
proximately preserved.

Random projection is a simple yet powerful technique, and
it has another benefit. Dasgupta [17] has reported that even if
distributions of original data are highly skewed (have ellipsoidal
contours of high eccentricity); their transformed counterparts
will be more spherical.

First, we choose ann-dimensional random vector,p, and
letP(l) be thel-thn×d matrix whose columns are vectors,p

(l)
1 ,

p
(l)
2 , . . . , p(l)

d . Then, an originaln-dimensional vector,x, is
projected onto ad-dimensional subspace using thel-th random
matrix, P(l), where we compute ad-dimensional vector,x′,
whose coordinates are the inner productsx′

1 = p
(l)
1 · x, . . . ,x′

d

= p
(l)
d · x.

x′ = P(l)T

x (4)

In this paper, we investigate the feasibility of random pro-
jection for speech feature transformation. As described above, a
random projection fromn dimensions tod (= n) dimensions is
represented by ann×d matrix,P. It has been shown that if the
random matrixP is chosen from the standard normal distribu-
tion (with mean 0 and variance 1, referred to asN(0, 1)), then
the projection preserves the structure of the data [21]. In this
paper, we useN(0, 1) for the distribution of the coordinates.
The random matrix,P, can be calculated using the following
algorithm [13][17].

• Choose each entry of the matrix from an independent and
identically distributed (i.i.d.)N(0, 1) value.

• Make the orthogonal matrix using the Gram-Schmidt al-
gorithm, and then normalize it to unit length.

Orthogonality is effective for feature extraction because the
HMMs used in speech recognition experiments consist of di-
agonal covariance matrices. Fig. 3 shows examples of random
matrices fromN(0, 1).

 
 

2222 4444 6666 8888 10101010 12121212222244446666
88881010101012121212

 
 

2222 4444 6666 8888 10101010 12121212222244446666
88881010101012121212

 
 

2222 4444 6666 8888 10101010 12121212222244446666
88881010101012121212

 
 

2222 4444 6666 8888 10101010 12121212222244446666
88881010101012121212

-0.4-0.4-0.4-0.4-0.2-0.2-0.2-0.200000.20.20.20.20.40.40.40.40.60.60.60.6

-0.4-0.4-0.4-0.4-0.2-0.2-0.2-0.200000.20.20.20.20.40.40.40.40.60.60.60.6
-0.4-0.4-0.4-0.4-0.2-0.2-0.2-0.200000.20.20.20.20.40.40.40.40.60.60.60.6

-0.4-0.4-0.4-0.4-0.2-0.2-0.2-0.200000.20.20.20.20.40.40.40.40.60.60.60.6

Figure 3: Examples of random matrices 12 dim (12× 12).
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Figure 4: Random projection on the feature domain. An origi-
nal feature is transformed to various features using various ran-
dom matrices. (Eq. 4)

3.2. Vote-based combination

As mentioned in the previous section, we can make many (infi-
nite) random matrices fromN(0, 1) (Fig. 4). Since there may
be some possibility of finding a random matrix that gives bet-
ter performance, we will have to select the optimal matrix or
the optimal recognition result from them. To obtain the optimal
result, a majority vote-based combination is introduced in this
paper, where ROVER combination is applied to the results from
the ASR systems created from each RP-based feature.

Fig. 5 shows an overview of the vote-based combination.
First, random matrices,P(l) (l = 1, ..., L), are chosen from
the standard normal distribution, with mean 0 and variance 1.
Speech features are projected using each random matrix. An
acoustic model corresponding to each random matrix is also
trained. For the test utterance, using each acoustic model, an
ASR system outputs the best scoring word by itself. To obtain
an optimal result from among all the results for random projec-
tion, voting is performed by counting the number of occurrences
of the best word for each RP-based feature.

For example, in the case ofL = 20, 20 kinds of new feature
vectors are calculated using 20 kinds of random matrices. Then,
we train the 20 kinds of acoustic models using 20 kinds of new
feature vectors. In the test process, 20 kinds of recognition re-
sults are obtained using 20 kinds of acoustic models. To obtain
a single hypothesis from among 20 kinds of recognition results,
voting is performed.

Speech 
feature

●●●
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Figure 5: Overview of the vote-based combination.

4. Evaluation

4.1. Experimental conditions

The proposed method was evaluated on a word recognition
task for one male with an articulation disorder. For the con-
ducted experiments, we recorded 210 words included in the
ATR Japanese speech database. Each of the 210 words was
repeated five times (Fig. 6). The speech signal was sampled at
16 kHz and windowed with a 25-msec Hamming window every
10 msec.

It was difficult to recognize an utterance of an articulation
disorder using an acoustic model trained by utterances of phys-
ically unimpaired persons. Therefore, in this paper, we trained
the acoustic model using the utterances of a person with an ar-
ticulation disorder. When we recognized the 1st utterance, the
2nd through 5th utterances were used for training. We iterated
this process for each utterance. The acoustic models consist of
a HMM set with 54 context-independent phonemes and 8 mix-
ture components for each state. Each HMM has three states and
three self-loops.

A
m

pl
itu

de

Time [sec] 

1st 2nd 3rd 4th 5th 

Figure 6: Example of recorded speech data.

4.2. Experiment 1

In Experiment1, recognition results were obtained for each ut-
terance of a person with an articulation disorder using speaker-
dependent model.

The system was trained using 24-dimensional feature vec-
tors consisting of 12-dimensional MFCC parameters, along
with their delta parameters.

Table 1: Recognition results [%] for each utterance in Experi-
ment 1

1st 2nd 3rd 4th 5th

75.7 86.7 92.9 90.5 88.6

Table 1 shows the results obtained in Experiment 1. In a
person with an articulation disorder, the recognition rate for the
1st utterance was 75.7%. As can be seen in Table 1, it was
significantly lower than other utterances. It is considered that
the speaker experiences a more strained state during the first
utterance compared to subsequent utterances because the first
utterance is the first intentional movement. Therefore, athetoid
symptoms occur and articulation becomes difficult. It is be-
lieved that this difficulty causes fluctuations in speaking style
and degradation of the recognition rates.
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4.3. Experiment 2

The aim of Experiment 2 is to evaluate the improvement intro-
duced by the use of a PCA-based feature extraction method. For
Experiment 2, PCA was applied to 24 mel-scale filter bank out-
put. Then, we computed the filterV using the 2nd through 5th
utterances (the more stable utterances). We experimented on the
number of principal components, using 11, 13, 15, 17, and 19
dimensions. Then, the delta coefficients were also computed.
Comparison results between the baseline method (MFCC) and
the PCA-based feature extraction method for the 1st utterance
were shown in Fig. 7.

As can be seen in Fig. 7, the use of PCA instead of DCT
improved the recognition rate for the 1st utterance from 76.7%
(15-dimensional MFCC and their delta) to 80.5% (17-principal
components and their delta). This results gives the evidence of
the improvement introduced by the use of PCA instead of DCT
when dealing with the 1st utterance. In addition, the recognition
rates of the other utterances were equal to those of MFCC.
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Figure 7: Comparison of DCT and PCA for the 1st utterance in
Experiment 2.

4.4. Experiment 3

In order to test the effectiveness of a RP-based feature projec-
tion method, in Experiment 3, two RP-based features were eval-
uated. Each feature description was found below:

1. PCA[17]→RP[17] +∆RP[17]:
Random projection is applied to PCA-based features at
thet-th frame,x(t) ∈ R17, and the new feature,y(t) ∈
R17, is obtained.

y(t) = P(l)T

x(t) (5)

Then, the new feature also has the delta parameter of
projected feature,y(t). The final system feature dimen-
sionality is 34.

2. PCA[17]→RP[17] +∆PCA[17]:
Random projection is applied to PCA-based features,
x(t) ∈ R17, and the new feature,y(t) ∈ R17, is ob-
tained. Then, the new feature also has the delta coeffi-
cient of original feature,x(t). The final system feature
dimensionality is 34.

We investigated the performance of random projections for
various random matrices (l = 20, 40, 60, 80, and 100) sam-
pled fromN(0, 1). Tables 2 and 3 show the recognition rate
versus the number of random matrices for each feature. The

Table 2: Word recognition rate (%) for the 1st utterances using
feature 1 in various random matrices. (The recognition rate of
PCA-based features is 80.5%)

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 79.5% 80.5% 76.5 % 72.9%
40 80.0% 81.0% 76.8% 72.9%
60 80.5% 83.3% 76.8% 72.9%
80 80.5% 83.3% 76.8% 72.4%
100 80.5% 83.3% 76.8% 72.4%

Table 3: Word recognition rate (%) for the 1st utterances using
feature 2 in various random matrices. (The recognition rate of
PCA-based features is 80.5%)

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 83.3% 81.9% 79.5% 76.7%
40 85.2% 83.8% 79.6% 71.9%
60 85.2% 83.8% 79.5% 71.9%
80 84.8% 83.8% 79.5% 71.9%
100 84.8% 83.8% 79.5% 71.9%

results of “RP w/o combination” show the maximums, means,
and minimums obtained from each random projection without
ROVER-based combination.

Table 2 shows the performance results obtained using fea-
ture 1 in Experiment 3. As can be seen in Table 2, the max-
imums of random projections without ROVER-based combi-
nation for 60, 80, and 100 random matrices were higher than
the recognition rate of PCA-based features. However, even if
ROVER-based combination is applied, we could not show fur-
ther performance increases in our experiments using feature 1.

The recognition results obtained using feature 2 are shown
in Table 3. As can be seen in Table 3, the results for feature 2 in-
dicated that the vote-based random-projection combination im-
proved the recognition rate from 80.5% (17-dimentional PCA
and their delta) to 85.2% using the combination of 40 or 60 ran-
dom matrices, although the means of random projections with-
out combination for some random matrices was lower than the
recognition rate of the original features.

We can see that the combination of random projection and
ROVER outperforms both the baseline method (MFCCs) and
the PCA-based feature extraction method. This result gives the
evidence of the improvement introduced by the feature transfor-
mation based on random projection and the use of ROVER to
obtain an optimal result. One of the possible reasons the ran-
dom projection improves the recognition rates may be that if
distributions of original data are skewed (have ellipsoidal con-
tours of high eccentricity), their transformed counterparts will
become more spherical [17]. However, there were ‘bad’ pro-
jections that cause degradation of speech recognition accuracy
compared with the recognition of original features. Therefore,
more research will be needed to investigate the effectiveness of
the random projection methid for speech features.
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5. Conclusions
As a result of this work, a method for recognizing dysarthric
speech using a robust PCA-based feature extraction and trans-
formation based on random projection has been developed. In
the feature extraction, PCA is applied to the mel-scale filter
bank output. It can be expected that PCA will project the main
stable utterance elements onto low-order features, while ele-
ments associated with fluctuations in speaking style will be pro-
jected onto high-order features. Moreover, the proposed method
transforms the PCA-based features using various random ma-
trices. It also introduces a vote-based combination method to
obtain an optimal result from the ASR systems created from
each RP-based feature. Word recognition experiments were
conducted to evaluate the proposed method for one male with
an articulation disorder. The results of the experments showed
that a method based on random projection outperformed both
a baseline method (using MFCC) and a PCA-based feature ex-
traction method.

As future work, we will continue to investigate how to se-
lect the optimal basis vector from a random matrix.
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