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Abstract
We report on the development of a system which will bring per-
sonalised state-of-the-art automatic speech recognition into the
homes of people who require voice-controlled assistive tech-
nology. The ASR will be sited remotely (‘in-the-cloud’) and
run over a broadband link. This will enable us to adapt the
system to the user’s requirements and improv the accuracy and
range of the system while it is in use. We outline a method-
ology for this: the ‘Virtuous Circle’. A case study indicates
that we can obtain acceptable performance by adapting speaker-
independent recognisers with 10 examples of each word in a 30-
word command-and-control vocabulary. We explain the idea of
a PAL - a Personal Adaptive Listener - which we intend to de-
velop out of this study.
Index Terms: dysarthric speech recognition, ‘in-the-field’
speech recognition, cloud-based speech recognition

1. Introduction
With an ageing population and the increasing acceptance of
community-based care, there is a growing demand for elec-
tronic assistive technology (EAT). One of the major uses of EAT
is to support independent living, particularly among the elderly
and the physically impaired. Devices such as environmental
control systems (ECSs) allow people to control many aspects of
their home environment through a single control interface. Typ-
ically these systems will be operated using a switch-scanning
interface which accommodates the limited motor control abili-
ties of users who have physical disabilities.

A major drawback of switch-scanning interfaces is that they
can be time-consuming and effortful to use. It is therefore ap-
propriate to consider alternative input-methods for EAT that can
accommodate users with limited physical abilities. The use
of speech is an attractive alternative to switch-scanning inter-
faces. Indeed the prospect of using automatic speech recog-
nition (ASR) as an alternative input-method for EAT has been
discussed in the literature for more than thirty years [1, 2].

A significant proportion of people requiring EAT have
dysarthria, a motor speech disorder associated with their phys-
ical disability [3]. As a result of the effect of dysarthria on
speech production, inexperienced listeners find speech from
people with dysarthria difficult to recognise [4]. Machine recog-
nition of dysarthric speech is also considered a difficult prob-
lem.

Large vocabulary speaker adaptive recognition systems
have been successfully used for people with mild and moderate
dysarthria as a means of inputting text. These systems, how-
ever, have been shown to be less successful for people with se-

vere dysarthria (e.g. [5, 6]). Specific modifications to speaker
adaptive speech recognition algorithms with the aim of improv-
ing the recognition of dysarthric speech patterns have been de-
scribed but they have not yet appeared in a widely available
form [7, 8].

Speaker dependent speech recognition has often been
thought to be more appropriate for users with severe dysarthria.
This is because models can be trained directly with the speaker’s
utterances rather than assuming their speech is similar to the
typical speech the models were originally trained with [9].
Speaker dependent recognisers have been shown to perform
well for severely dysarthric users in several studies [10, 11].
In these examples however, the input vocabularies were quite
small, which can limit the potential usefulness of the EAT sys-
tem.

In recent years, new corpora of dysarthric speech have
become available [12, 13]. These data sets have enabled
researchers to conduct more systematic studies than before
[14, 15], and open the possibility of comparing techniques us-
ing reference test sets. These corpora are however small com-
pared to those used in modern, mainstream ASR. One reason
for their relatively small size is the fact that prolonged speak-
ing for people with severe dysarthria can be tiring. Therefore
passive data collection from this population is likely to remain
limited, unlike data collection for the typical speaking popula-
tion. The only way to acquire substantial amounts of data is
from a system which is being actively used.

Most voice-enabled EATs described in the literature have
been systems that have been developed for relatively small scale
studies and with the main focus being on the observed ASR per-
formance. There are some real challenges to be solved when
porting such systems and setups to more ‘realistic’ scenarios,
especially because of the larger number of users involved, and
the need for a large degree of automation whilst still accommo-
dating the needs of the individual users for personalisation. This
paper describes recent work on designing a real ‘in-the-field’
ASR-based EAT system where scalability and ease of initialisa-
tion has been at the forefront of the design from the onset. We
have focused on two issues: how to most effectively setup an
initial system for a given speaker (finding their optimal ‘oper-
ating point’) and how to use cloud-based ASR servers to allow
the researcher free access to maintain and update ASR models.

We present the homeService system in which we are de-
veloping state-of-the-art ASR. homeService is part of the UK
EPSRC Project in Natural Speech Technology project, a collab-
oration between the Universities of Edinburgh, Cambridge and
Sheffield. homeService users are being provided with speech-
driven ECS and eventually spoken access to other digital appli-
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cations. We are in the process of recruiting around 10 users to a
longitudinal study: each user will be engaged with homeService
for at least 6 months.

From our experience in previous projects [10, 16], which in-
cluded user requirement studies, we will continue to work with
users in a collaborative way: the users effectively become part
of the research team. As part of this process, users will inform
the design and specification of the functionality of their personal
system. In addition we will work with users to close what we
have referred to as the ‘virtuous circle’. By working with each
user we will establish an initial ‘operating point’: a task which is
sufficiently simple that we can expect good performance from
the ASR and yet sufficiently useful that the user’s interest is
maintained. We deploy this system and provide software which
enables the user to practice with it. Practice improves the user’s
pronunciation consistency and, crucially, provides more data for
ASR training. The exercises provide the user with feedback, not
based on the match to a standard pronunciation but on how well
a new utterance fits the user’s current model. When the perfor-
mance of the system has improved sufficiently, we widen the
vocabulary and range of target devices homeService controls.
This process is iterated: the ’virtuous circle’. This is an exam-
ple of Participatory Design [17].

As part of the ethical approval obtained for the study, the
informed consent of users will enable us to collect examples
of speech data from their interactions with the homeService
system. These interactions will be stored and used to create
a database which will become available to the research team
but will not be made publicly available due to privacy issues.
To further reduce any concern users might have about the sys-
tem’s ability to ‘listen’ to them, the interface will clearly in-
dicate when the microphone is open - typically only a couple
of seconds for each voice command. At any time participants
will also be able to ”opt-out” of the recording process, or even
request recordings be deleted and not used in the database.

The ASR will run remotely ‘in-the-cloud’, and be con-
nected to the homeService users’ home by a dedicated broad-
band link. This is a novel approach for providing speech-driven
EAT which will enable us to collect speech data, train new sta-
tistical models, experiment with adaptation algorithms, change
vocabularies and so on without having to modify the equipment
in the user’s home. This will reduce the amount of researcher
time spent travelling to visit users, but more importantly will
enable us to modify the system rapidly. This means new mod-
els can be deployed when they are ready, and new data can be
analysed as soon as it is collected. We explain the homeService
setup in more detail in section 2.

The development of the ‘in-the-cloud’ recognition system
is described in section 3. In section 5 our participatory design
methodology is further developed. Some preliminary results of
the speech recognition system are presented in section 4.

2. homeService setup
A schematic diagram of the homeService system is shown in
figure 1. The system consists of two distinct parts: the atH-
ome system and the atLab system. The atHome system will be
deployed in a user’s home and comprises a PC and a series of
input and output devices to enable the system to receive spoken
commands and interact with devices in the home environment,
for example through the transmission of infrared signals. The
atLab system resides at the university and comprises the main
server which operates the ASR system and maintains the system
state for each atHome system.

@Lab

@Home

Main servers

- ASR
- speech synthesis

- system state

Tablet

Infrared sender

Microphone

Audio
Recognition

result

PC hub

Figure 1: Diagram of the homeService system with its two dis-
tinct parts: the atHome component in a user’s home and the at-
Lab ‘in-the-cloud’ part. For simplicity, only one user is drawn
here but the cloud-based ASR server enables us to scale to many
simultaneous users.

The system hardware consists of ‘off-the-shelf’ items such
as a microphone array, an Android tablet for display and an in-
frared transmitters, which reduces the overall cost of each in-
stallation, and means the system will not need to rely on spe-
cialist hardware. In the following sections the components of
the system are described in detail.

2.1. Components

2.1.1. The PC

The atHome software is designed to run on a Linux-based PC.
This PC will act as the main hub for the atHome system. It
maintains the communication between the atLab part of the sys-
tem and the peripherals in the atHome part of the system. The
software controls the recording of audio from the system mi-
crophone, sends the audio back to the lab via a broadband link,
provides feedback to the user, and controls the sending of in-
frared signals to various devices in the home. The software also
sends updates to the screen of the tablet, and when appropriate,
will play synthesised speech output.

Although, from an operational point of the view, the PC is
at the heart of the atHome system, the design philosophy of the
atHome system ensures that the PC is as unobtrusive as possi-
ble. Consequently, from the users’ perspective the system mi-
crophone and the tablet PC are the key parts of the system.

The requirements for the PC are that it should to be rela-
tively small, quiet and discrete, with a low energy consumption.
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For this a Shuttle XH61v with a core i3 3220 was chosen (30.5
x 6.4 x 21.6 cm).

2.1.2. Microphone

For speech data capture, we use a high-quality USB microphone
array (Dev-audio Microcone). It has a hexagonal design with 6
microphones placed in each of the six sectors, each covering
approximately 60◦ of the surroundings. The Software Develop-
ment Kit gives access to each of the 6 individual microphone
channels as well as a stereo output of the beam-formed and
noise-reduced signal, which will help us to reduce cross-talk
from other speakers, the TV and so on. The Microcone also
has a pleasing design, which is important as it will have to have
a relatively prominent and very visible position in the users’
homes throughout the full study.

2.1.3. Infrared transmitter

Remote control of the devices (such as TV, radio, lights etc.)
is performed by an USB infrared (IR) emitter (IRtransWiFi
IRDB). To make it personalised for each home, there is a config-
uration step where the emitter is trained with the IR commands
from the original remote controls of the home devices. The re-
searcher has to perform this step manually, using the software
provided with the IR emitter. After this step is completed, the
system is able to associate system actions (e.g. “turn on TV”)
to the specific IR commands for the devices it is controlling.

2.1.4. Android tablet

The Android tablet acts as a personalised, visual interface for
the user. This has several advantages; during system operation
it will

• display a representation of the system state,
• display the options available for the user (this directly

corresponds to the current ASR vocabulary),
• act as a touch input if necessary.

In addition, the tablet will have an app which will enable the
system to acquire additional training data from the user. Soft-
ware for user practice exercises will run on the tablet.

The configuration of the display is loaded from a XML file,
where the description of each device is written by the system
developer. This permits the personalisation of the display.

2.1.5. atLab Server

The audio signal which is to be recognised is transferred across
to the atLab part of the homeService system over the broadband
link and subsequently passed on to the ASR server, also run-
ning at the university. When the recognition result is known
it is ‘acted’ upon by the atLab software: for the environmen-
tal control system this means determining the next state of the
system including possible infrared-codes which need transmit-
ting and whether the tablet screen activity needs updating. All
of the information concerning the state is then communicated
back to the home of the user and acted upon. The two main
communication links in the system (to the home and to the lab)
are governed by individual APIs.

The atLab software runs on a dedicated server at the univer-
sity. Apart from being the main interface to the individual users,
it also handles the communication to and from a bank of ASR
servers (one for each user) which will provide online speech
recognition based on models and setups that are personalised to
each user.

3. ASR
One of the main design aims was to base the system on ‘in-
the-cloud’ ASR. This provides the research team with full con-
trol over the specifics of the ASR for each user; it is relatively
straight-forward to change for example acoustic models, vocab-
ularies and lexicons without disturbing the user unnecessarily.
It also gives the researchers more scope for monitoring the state
of the atHome systems, and crucially, for much more immedi-
ate trouble-shooting. Software components can easily be taken
down and re-started. In the future, we also envisage having
short remote chat-sessions with the users/carers to discuss any
issues about the system.

It is important to bear in mind that this easy access design
does impose constraints on the research team. For instance,
given that data will be collected from the microphone for speech
events while the system is in use, all users must be carefully
briefed about how these recordings will be made and stored be-
fore they can provide informed consent to take part in the study.
In the future it is envisaged that the system will be used in ‘open
mic’ sessions when all the audio from the microphone will be
gathered at agreed times of the day. Again, careful briefing of
the users will be required as are procedures for users to retro-
spectively opt-out of these data collection sessions.

Each user has a dedicated ASR server which will be pre-
loaded with personal acoustic and language models as well as
grammars. To maximise performance we intend to use gram-
mars which restrict the vocabulary according to the given state
the system is in. For example, if the system is operating in
the environmental control mode and the user has just turned on
the guide on the TV, a state-dependent grammar would contain
words needed for navigating the guide, e.g. ’up’, ’down’, ’left’,
’right’, ’ok’ and ’exit’ as well as certain power or meta words
which would allow the user the change state, for example by
saying ’home’ or ’back’.

The ASR server’s recognition technology is built around
an in-house decoder based on weighted finite state transduc-
ers (WFSTs). This decoder was the winner in the NIST meet-
ing recognition evaluations in 2007 and 2008. For details see
[18, 19]. Every recognition cycle (consisting of audio being
recorded, transferred across to the servers and subsequently
recognised) will trigger the possibility of a change of state de-
pendent on the current state and the newly recognised word. To
further support this, the ASR server can dynamically load the
next WFST from a set of pre-computed WFSTs matching all
of the possible states of the system. We plan to expand this to
enable online compilation of WFSTs.

4. Experimental setup
Recruitment of users is underway for the homeService study.
In preparation for setting up dedicated ASR systems for each
user, we have carried out a pilot-study using data from a poten-
tial user, which we recorded during previous studies. This user
(F01) is a female, in her mid fifties at the time the recordings
were made, who has cerebral palsy. Her speech is classified as
spastic dysarthric of a severe nature. She has always been a very
keen participant in our studies, and as such is a valued member
of our extended research team.

We have chosen her as one of the first users in the home-
Service study as she has previously demonstrated that she is a
highly motivated adopter of new technology; she is also a keen
PC user.

She currently uses a switch mounted on the headrest of her
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wheelchair to access her scanning-based environmental control
system and as well as to control her PC via dedicated software.

4.1. Data

F01 has provided speech recordings for two research projects in
the last decade, which is of interest here. These are all isolated
words initially recorded with the aim of providing training ma-
terial for whole word ASR models used in an an ECS system
similar to the primary homeService task. The word lists con-
sisted of isolated words such as ”TV”, ”on”, ”off”, ”channel”,
etc. In total we have 1286 individual word recordings covering
a vocabulary of 33 words (approximately 38 examples of each
word).

In this study we wish to train tri-phone derived word mod-
els, and the ideal training data would be sets of phonetically rich
words or sentences. However, given the nature of this data set
of isolated words, it is possible to quickly create a realistic test
set using examples drawn from the data set.

After a process of initial alignment to remove extraneous
silences, around 40 minutes of data recorded from two different
projects remained; project A provided 23 minutes of 8 kHz data
(for the work here, this data has been up-sampled to 16 kHz)
recorded using a headset microphone (SkyTronic Tie-Clip Mi-
crophone) onto a dedicated Arm-based embedded device (Bal-
loon 3 board with a GEWA PROG III infrared micro chip).
The remaining data from project B was recorded at 16 kHz on
a laptop using a microphone array (the Acoustic Magic Voice
Tracker array) [10].

4.2. Acoustic modelling

All hidden Markov models (HMMs) were trained using the
maximum likelihood (ML) criterion. State-clustered, triphones
having Gaussian mixture models with 16 components per state
were used.

4.3. F01 case study

Although the amount of data we have available from speaker
F01 is relatively small compared to what one would normally
need to train a high-performance, personalised ASR system, it
far exceeds what we could expect to be able to record from a
new homeService user in a typical enrolment session. What
it does do is enable us to explore the effect of having access
to different amounts of data for e.g., adaptation purposes. The
experiments presented here aim to investigate the relationship
between the quantity of training and recognition performance.
When recruiting new users for homeService this will be a useful
indicator of how much enrolment data will need to be recorded
to provide a good, initial operating point.

4.4. Results

First though, it is useful to assess F01’s data in terms of
baseline performance. Table 1 shows some baseline results
for her, where we have tested all of her speech on high-
performance models trained on typical speech meeting data and
on good, speaker-independent models trained on the dysarthric
UASpeech corpus [12]. The achieved accuracies of 8.9% and
13.5% are very low and indicate the severity of F01’s speech
impairment. The UASpeech result is in a range comparable
to what has been reported for some of those speakers as well
[20, 15].

Table 1 also shows the results from using some of F01’s
data to perform a maximum a posteriori (MAP) adaptation from

System Accuracy

Meeting (SI) 8.9 %
Meeting+MAP (SD) 74.7 %
UASpeech (SI) 13.5 %
UASpeech+MAP (SD) 75.5 %

Table 1: Word accuracy rates for baseline systems. Please see
text for further explanation.

the original, speaker-independent meeting models or UASpeech
models [21]. As we have very limited data, the presented accu-
racy is the mean of the accuracies obtained from doing a round-
robin style test using 10 folds of the complete dataset, each hav-
ing a 90%/10% split into an adaptation set and a test set. The
MAP-based systems performed best in precursor experiments
reported in [15] and show large improvements over the baseline
systems with accuracies of 74.7% and 75.5% respectively.

It is important to note that these results were obtained us-
ing more than 1100 words from speaker F01, which is far be-
yond what would be reasonable and realistic to obtain from a
prospective user. This is not only because prolonged periods
of speaking can be tiring for these users, but also it would be a
considerable undertaking to make that many recordings. In our
experience it would take several weeks to collect this quantity
of data.

For projects like homeService, there is a notable trade-off
between not asking participants to endure lengthy enrolment
sessions, whilst still ensuring we can deliver a sufficiently use-
ful level of performance in the first system we deploy. Although
all users will be aware that the systems are not perfect, if it
becomes frustrating to use because of too many errors we run
a real risk of the users rejecting the system (and the study),
thereby breaking the foundations of the ‘virtuous circle’, where
good systems will lead to increased use and data collection.

We therefore wished to investigate how much adaptation
would be needed to get a particular level of performance. Figure
2 shows the results of increasing the amounts of data used for
adapting from the speaker-independent UASpeech and meeting
models respectively.

Both curves follow the same trend, and as expected the ac-
curacy increases with increasing amounts of data (presented as
number of words out of a total of 1158 words in each of the
training/adaptation folds). For the lower number of words there
is a dramatic increase in performance; this can be seen to taper
off approximately at around 300 words. Given F01 here has a
vocabulary of just over 30 words, this corresponds to approxi-
mately 10 instances of each word.

Interestingly, both the UASpeech based and the meeting
model based systems converge on approximately the same, sta-
ble level after about 400 examples, but the initial curve ascends
more slowly for the meeting models, so in situations where
smaller amounts of adaptation data is available the closer mod-
els from UASpeech are a better starting point.

5. Longer-term plans
As the pool of homeService users grows we will continue to
monitor the design choices surrounding the cloud-based setup
including ease of use for the researcher as well as whether the
users’ feel comfortable with the idea of their system being mon-
itored from outside of their home. It will also be interesting to
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Figure 2: Word accuracy as a function of increasing amount of
data used for MAP adaptation of acoustic models; x-axis shows
the number of utterances (each containing a single word) out of
a possible 1158 used for adaptation.

follow how the impact on the success of each individual user’s
virtuous circle.

We see the homeService systems as the first generation of
PALs - Personal Adaptive Listeners. A PAL is a portable, per-
haps wearable, device that belongs to an individual and adapts
to the speech communication characteristics and preferences of
its owner. Like human listeners, it does this whilst in use, does
it quickly and extends its utility over time. A PAL is somewhat
akin to a human valet: It understands its owner’s needs, car-
ries out their wishes and sometimes acts on their behalf. The
technology adapts to its user, rather than the other way round.
Crucially, The owner is able to teach the PAL through spo-
ken dialogues, which develop differently for different owners.
The owner-PAL relationship should be something like training
a dog.

To make the step from homeService to PALs requires spo-
ken dialogues between the owner and the device. Dialogue
management techniques in commercial dialogue systems are
usually hand-crafted, which makes them difficult to adapt. Dur-
ing the last decade it has become fashionable to approach
the dialogue management problem statistically, modelling the
dialogue as a Partially Observable Markov Decision Process
(POMDP) and optimising the dialogue policy with Reinforce-
ment Learning (RL) [22]. This framework provides robustness
against speech understanding errors and automatic learning of
dialogue policy. As the dialogue policy is learned with the data
gathered from interaction with the user, it is optimised for its
specific user, making it a personalised policy. RL permits on-
line learning, so the system can also adapt its policy to changes
in the user behaviour (e.g. when the user becomes more familiar
with the system) and to the changes in the speech understanding
system (e.g. when the ASR improves as more data is gathered).
The user can also explicitly give a reward to the system after
each interaction, ‘teaching’ the system.

The main problem with statistical dialogue management is
its intractability, due to the size of the state space and to the im-
possibility of exact solving the POMDP, but it is possible to use
approximate algorithms to build real sized dialogue systems.
Another problem is the long time that takes to learn a suitable
policy, but recent studies have been able to learn a policy for a

non trivial tourist information system in less than 200 dialogues,
which makes possible learning a policy directly from user inter-
action.

Adapting these techniques for PAL dialogues raises several
interesting issues:

• ’teaching your PAL’ should correspond to seeding the
dialogue statistics.

• A PAL should not make the same mistake twice.
• The owner will know exactly what the PAL understands.
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