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Abstract
The speech reception threshold (SRT) is the noise level at which
the speech recognition rate of a test person is 50%. SRT mea-
surement is relevant for patient screening, psychoacoustic re-
search and algorithm development in hearing aids and cochlear
implants. In this paper, we report on our efforts to automate
SRT measurement using an automatic speech recognizer. Dur-
ing a test, sentences are presented to the test subject at different
SNR levels. The person under test repeats the sentence and the
keywords it contains are scored by an audiologist. If all key-
words are repeated correctly, the sentence is evaluated as cor-
rect. The SNR level of each sentence is adjusted based on the
previous sentence’s evaluation. Aiming for an objective and re-
peatable measurement, the audiologist’s assessment is replaced
by an automatic speech recognizer’s evaluation. For this pur-
pose, we investigate different finite state transducer structures
to model the expected sentences as well as the impact of several
speaker adaptation schemes on the keyword detection accuracy.
A baseline recognizer using general acoustic models achieves a
performance of 88.8% keyword detection rate. Speaker adapted
acoustic models improve the performance yielding a keyword
detection accuracy of up to 90.7%. Finally, the impact of recog-
nition errors on the estimated SRT value is simulated showing
a minimal impact on the SRT measurement process. Based on
this analysis, it can be concluded that the proposed automatic
evaluation scheme is a viable tool for speech reception thresh-
old measurements.
Index Terms: keyword detection, speaker adaptation, cochlear
implant, speech test, speech reception threshold

1. Introduction
Speech reception threshold (SRT) measurements have been
used in a clinical setting for evaluating a person’s hearing ca-
pabilities and to diagnose hearing loss. The obtained SRT value
is a subjective measure for quantifying the hearing ability of
patients with cochlear implants (CI) in order to adjust the CI
parameters and analyze the impact of new developments in CI
devices on the patient’s hearing abilities [1, 2, 3]. Moreover,
these measurements provide useful data for psychoacoustic re-
search, e.g. to investigate how cognitive load influences speech
recognition of individuals.

Several Dutch speech tests for determining a patient’s
speech recognition threshold have been proposed, e.g. NVA-
tests [4] and LIST-tests [5]. During these tests, words or sen-
tences which are embedded in different levels of noise are pre-
sented to patients and they are asked to repeat what they hear.
The responses are evaluated by an audiologist who decides if

patients properly repeat the presented word or sentence. LIST-
tests consist of ten sentences that are presented to a patient at a
certain noise level. For each sentence, two to five content words
(called keywords henceforth) are defined. Each keyword in the
patient’s response is evaluated by the audiologist and if all key-
words were reproduced correctly (incorrectly), the noise level
in which the following sentence is embedded is increased (de-
creased) by 2 dB resulting in a more (less) challenging recog-
nition task. After ten sentences, the SRT value is obtained by
averaging the SNR levels at which the last six sentences are
presented. This speech reception threshold corresponds to the
point where 50% of the keywords are understood correctly by
the patient.

At the outset of this study, the SRT test procedure was iden-
tified as one that was particularly apt for automation since it
seems feasible to set up an automatic speech evaluation method
that makes significantly fewer errors than the human under test,
who operates around a 50% rate. Hence, errors introduced by
the speech recognizer are expected not to affect the test outcome
significantly. An automated test provides the additional bene-
fit of an objective and repeatable measurement compared to an
audiologist whose evaluation may be biased. Furthermore, au-
tomating this procedure saves a great amount of time in which
audiologists could focus more on their core tasks: providing a
better assistance to CI patients.

Automation of these tests was investigated in [6] by let-
ting the patients type what they have heard while accounting
for spelling errors. A rehabilitation tool for CI users using au-
tomatic speech recognition (ASR) is described in [7]. CI pa-
tients are encouraged to repeat spoken sentences upon which
correctness feedback is provided using ASR. The proposed sys-
tem for SRT tests is similar in recognition task, but differs in the
language model constraints since the main task is to detect the
keywords rather than recognition of the complete utterance. It
also differs from traditional keyword spotting (KWS) [8, 9, 10]
because the knowledge of the embedding sentence can be ex-
ploited while KWS is mainly used for unconstrained and spon-
taneous speech. As the expected utterances are known in the
scope of this paper, the use of deterministic language models is
feasible. The design procedure of these deterministic language
models is presented further in this paper.

We have further investigated the impact of several speaker
adaptation techniques on the keyword detection accuracy. In
this scenario, the data of an earlier SRT measurement session
with the same patient is reused to adapt his/her acoustic models.
Several adaptation methods such as MLLR [11] and constrained
and unconstrained linear mean and covariance transforms [12]
are applied to the speaker independent acoustic models and the
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Figure 1: Two layered speech recognition architecture.

performances of the adapted models are compared.
The rest of the paper is organized as follows. Section 2 in-

troduces the speech recognizer’s architecture and discusses the
design of deterministic language models and the speaker adap-
tation techniques that are applied in the experiments. The ex-
perimental setup is described in Section 3 and the results are
presented in Section 4. Finally, the conclusions are discussed in
Section 5.

2. Automatic Speech Evaluation Scheme
The proposed evaluation scheme uses an automatic speech rec-
ognizer that replaces the audiologist during the SRT measure-
ments. The overview of the ASR that is used for this purpose
is given in Section 2.1. As the expected utterances are known,
deterministic language models with different structures are de-
signed and used during recognition. Section 2.2 details the de-
sign procedure. Finally, several speaker adaptation techniques
are applied to investigate the impact on the recognition accuracy
which is the topic of Section 2.3.

2.1. ASR overview

A two layered HMM-based recognition system as illustrated in
Figure 1 is used for obtaining the word-level recognition output.
In the first layer, a phone recognizer generates a phone lattice
using task-independent acoustic and language models. These
models can be general models that are trained on the data of the
target language. In the second layer, task-dependent informa-
tion is provided in the form of a finite state transducer (FST) de-
scribing lexical and grammatical knowledge. The FST is com-
posed of two levels, namely the word and garbage FSTs mod-
eling the phone level information and the sentence FST con-
taining multiple word and garbage FSTs to model the expected
utterances. This structure comes with increased modularity as
the generic phone recognizer can be used for any recognition
task provided that the task-specific information is contained in
the second stage [13]. Using the task-dependent information
incorporated in the FSTs, the phone lattice obtained in the pre-
vious step is decoded into a word level recognition result which
can further be processed to obtain the keywords that have been
uttered.

2.2. Language model design

The basic FST structure models the expected sentence by allow-
ing the correct utterances of the words in the order they appear
in the prompt. Incorrect or irrelevant utterances are modeled by

the garbage FST. However, due to the nature of SRT measure-
ment tests, it is a requirement to have higher flexibility in the
sentence FST as the patients can repeat the presented words in
arbitrary order or they may skip some of the presented words.
All FSTs consist of a number of nodes and arcs depending on
the number of phones and words in the expected sentence. The
start and end nodes are marked with <s> and </s> respec-
tively. All other nodes are labeled with the keywords: visiting a
state indicates the associated keyword was detected. State tran-
sitions occur upon a match between a word or phrase model (the
edge’s earmark) and a partial path in the phone lattice output by
the first layer. Non-keywords (henceforth filler words), silence
(marked with #) and garbage (marked with GBG) cause a self-
transition. Garbage models any unanticipated speech allowing
any phone sequence. To keep it from being preferred over other
edges, it is penalized with a garbage model cost that is incurred
once upon entry. Based on this principle, three different FSTs
are designed modeling the expected patient’s response, each of
which handles the filler words differently.

In the first model, named the KWandFILLER model, each
filler word is accepted as an input with an arc linked to the node
of the preceding keyword. This model is illustrated with an ex-
ample for the Dutch sentence “MAMA vertelt ons elke AVOND
een kort VERHAAL” (MOM reads us a short STORY every
NIGHT) in Figure 2, where keywords are written in uppercase
characters.

In the KWandLONGFILLER model, only filler words of
sufficient length are added to the model in order to limit the
number of falsely detected filler words. This model is expected
to reduce the false alarms due to short filler words.

The third design, the KWandFILLERSEQ model, contains
a single arc that is associated with all filler words that appear
between two keywords. In this model, the canonical order of
the filler words is taken into account. This could have the ad-
vantage that the filler words are recognized in the correct order
and should prevent (especially short) fillers from erroneously
modeling keywords.

2.3. Speaker adaptation techniques

Speaker adaptation is implemented by linearly transforming the
means and possibly also the covariances of the Gaussians of a
speaker independent (SI) acoustic model. This transform is ob-
tained by maximizing the likelihood of a selection of adaptation
data as described in [11] and [12].

Three different adaptation techniques, namely a linear mean
transform (MLLR), constrained mean and covariance transform
(CMLLR) and unconstrained mean and covariance transform
(UMLLR), are investigated. For MLLR, the means (µ) of the
Gaussians of the SI acoustic models are linearly transformed
with a transformation matrix W : µ̂ = Wξ with ξ = [1 µ]. For
UMLLR, the transformation matrix W of the means (µ) and
the transformation matrix H of the covariances (Σ) are sepa-
rate: µ̂ = Wξ and Σ̂ = HΣHT . In the case of CMLLR, the
transformation A′ applied to the variances (Σ) must correspond
to the transformation A′ applied to the means (µ): µ̂ = A′µ−b′

and Σ̂ = A′ΣA
′T . These transforms are obtained by maximiz-

ing the likelihood of the adaptation data, details of which are
given in [11] and [12].

In each of these adaptation schemes, the states that are
present in the adaptation data should be provided. This infor-
mation is captured in a state segmentation which is generated
from a transcription of the utterance. This transcription is ac-
quired by manual annotation of the data. To avoid this manual
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Figure 2: Example of the KWandFILLER FST model.

intervention, unsupervised adaptation is also considered, where
only sentences that were assessed as correct by the system are
retained as adaptation data.

3. Experimental setup
3.1. Speech data and baseline recognizer

The performance of the baseline system with the presented FST
models and of the system with the adapted acoustic models was
evaluated on recordings that contain the patient’s responses to
LIST-tests performed by normal hearing persons. Utterances
from 17 speakers two of which are non-native Dutch speakers
are captured in a recording cabin used for SRT measurements.
In total, 79 lists are evaluated resulting in 4.64 lists per per-
son on average. For the speakers with enough recorded lists,
speaker adaptation was applied and performance of the speaker
adapted system is evaluated using cross validation to obtain sta-
tistically significant results.

The acoustic models were trained based on the Co-
Gen database ([14]) which contains 7 hours of read speech.
The speaker independent acoustic models are semicontinuous
HMMs with tied Gaussians consisting of 576 states and 10635
Gaussians. The task-independent language model consists of
a trigram phoneme sequence model derived from a Dutch
database with correctly read sentences [15]. The preprocessing
is based on Mel-spectrum analysis and includes cepstral mean
subtraction and discriminant analysis (MIDA) [15] [16].

3.2. Evaluation metrics

When evaluating the quality of the automated CI test, there
are two important errors to consider: not detecting correct sen-
tences on the one hand and classifying a sentence that is incor-
rect as correct on the other hand. Two performance criteria have
been defined: keyword detection rate (KDR) quantifying the

former and false alarm rate (FAR) quantifying the latter. Both
of these metrics are defined at the sentence level, since the SNR
is adapted based on the evaluation of an entire sentence. A sen-
tence is correct if all keywords are repeated correctly by the
patient and incorrect if the patient missed at least one keyword.

KDR =
# of correctly detected sentences

# of correct sentences
(1)

FAR =
# of sentences incorrectly classified as correct

# of incorrect sentences
(2)

4. Results and discussion
4.1. Baseline system

The FSG models presented above are evaluated according to
their performance by means of a KDR-FAR plot in Figure 3.
There are three different operating points obtained by manip-
ulating the phone lattice density. The equal error rate points
are marked with ♦. The KWandLONGFILLER model provides
the worst performance, whereas the other two models perform
similarly. The reason for the bad performance of the KWand-
LONGFILLER model is that it has to use the garbage model to
model the short filler words. The performance of the model is
thus very dependent on the choice of the garbage model cost.
If the garbage model cost is very high, keywords might be de-
tected at the instants where short filler words are uttered. On
the other hand, if the garbage model cost is too low, the garbage
model is often used to explain the utterance resulting in an in-
creased number of keyword deletions. The performance of the
KWandFILLER and KWandFILLERSEQ model are compara-
ble. The KWandFILLER model is the most flexible of the two
allowing patients not to say filler words or repeat them in any
order, though such deviations do not occur often in our data.
Since it is expected that the KWandFILLER model would per-
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Figure 3: Comparison of different FST models for the baseline
system.

form better in case a patient would deviate from the canonical
word order, the KWandFILLER model is the best choice for
practical applications. The equal error rate point is at a FAR of
11.2% and a KDR of 88.8% as indicated in Figure 3.

4.2. Speaker adapted system

The three adaptation techniques described above are imple-
mented and the obtained KDR-FAR curves are illustrated in
Figure 4. The adapted systems perform better than the base-
line at most of the operating points. The equal error rate point
is obtained at a false alarm rate of 9.7% for MLLR, 9.85% for
UMLLR and 9.3% for CMLLR as indicated in the figure.

These adapted models are obtained using the manually an-
notated adaptation data from two LIST-tests (20 sentences). The
adapted models for a certain speaker were tested on the other
recorded lists for that speaker. To obtain enough statistical rele-
vance, cross-validation is applied.

In the case of unsupervised adaptation, only sentences
which were evaluated as correct by the baseline recognizer are
included as adaptation data. When considering two lists per
person, only a limited number of adaptation sentences could be
included. It was not possible however to consider more lists, be-
cause of the limited number of recorded lists per speaker. Here,
the expected utterance is used as the transcription. In Figure 5
the KDR-FAR curves for baseline, supervised and unsupervised
adapted systems are plotted. The adaptation technique that was
applied here is MLLR. The unsupervised adapted system per-
forms worse than the baseline at some operating points. This is
because not enough adaptation data could be included, due to
the limited number of recordings per person. The equal error
rate point for the unsupervised adapted system is obtained at a
false alarm rate of 10.75%, compared to the 9.7% FAR for the
supervised adapted system.

4.3. Theoretical impact of the recognition error on the mea-
sured SRT-value

A LIST test consists of ten sentences, the first of which is pre-
sented at a very low SNR. This sentence is repeated until it is
evaluated as correct. Then, we advance to the next sentence
adapting the SNR at which the sentence is presented according
to the evaluation of the previous sentence. In the end, the mean
of the SNR at which the last six sentences were presented is
taken as the measured SRT-value.

Since the recognizer makes errors by not detecting correct
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Figure 4: Comparison of the adapted system performance
(MLLR, CMLLR and UMLLR) with baseline system using the
KWandFILLER model.
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Figure 5: Comparison of the MLLR-adapted system perfor-
mance (supervised and unsupervised) with baseline system us-
ing the KWandFILLER model.

sentences and falsely evaluating incorrect sentences as correct,
the measured SRT using the automatic procedure will deviate
from the manually obtained value. The effect of the recognizer
error on the final SRT is modeled using performance intensity
functions. These performance intensity functions model the pa-
tient’s score as a function of the SNR at which the sentence
is presented. An example of a performance intensity curve is
given in Figure 6. Based on the input SNR, the probability of
a patient understanding the sentence correctly is determined. A
binomial variable with this probability is drawn indicating the
patient’s evaluation of the sentence. A recognition error is intro-
duced by the speech recognizer which may flip this evaluation
adjusting the SNR in the wrong way. Based on the recognizer’s
evaluation, the next SNR is calculated. By simulating a large
number of lists, we obtain the distribution of the measured SRT-
value with and without a recognizer error. Without introducing
the recognizer error, the mean measured SRT over 300 lists is
found to be -7.8 dB with a standard deviation of 1.2 dB. With
a recognizer error of 10 %, the mean measured SRT becomes -
8.0 dB with a standard deviation of 1.8 dB. The evolution of the
mean and standard deviation of the measured SRT in function of
the ASR’s error rate are presented in Figure 7 and 8 respectively.
It can be seen that the mean measured SRT value deviates fur-
ther from the initial value of -7.8 dB for normal hearing persons
as the recognizer error increases. The standard deviation on the
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Figure 6: Performance intensity curve for a LIST sentence pre-
sented at a certain SNR. (Taken from [5]).
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Figure 7: The mean of the measured SRT as a function of the
speech recognition error.

measured SRT also increases with an increase in the recognizer
error.

When new CI techniques are assessed, a comparative mea-
surement before and after activation of the new component is
performed. In this case, the bias on the measurement observed
when comparing the manual and the automatic test results is of
minor importance. It is important however that measurements
can be conducted with significant accuracy. If desired, the stan-
dard deviation on the measured SRT can be reduced using more
sentences per LIST-test. Using 20 instead of 10 sentences per
LIST, reduces the standard deviation on the measured SRT to
1.13 dB, for a recognizer error of 10%.

Another use of LIST-tests is to assess the hearing of patients
based on their SRT score. In this task, an absolute SRT value is
obtained and hence a bias might lead to inaccurate estimations.
However, when assessing whether a person has normal hearing
or needs some treatment, the differences in SRT scores are so
large that this bias will not lead to a different evaluation.

5. Conclusions
A Dutch CI speech reception threshold test (LIST) has been au-
tomated using automatic speech recognition. The LIST consists

0 0.05 0.1 0.15

1.4

1.6

1.8

2

2.2

2.4

2.6

Speech recognizer error

S
R

T
 s

ta
nd

ar
d 

de
vi

at
io

n

Standard deviation on measured SRT

Figure 8: The standard deviation on the measured SRT as a
function of the speech recognition error.

of ten sentences played at different SNR levels depending on
the evaluation of the previous sentence. The speech reception
threshold is estimated as the mean of the last six SNR levels.

A speaker independent speech recognizer can work at an
operating point with a false alarm rate of 11.2% and keyword
detection rate of 88.8% which are both defined at the sentence
level. Speaker adaptation improves the results to 9.3% false
alarm rate and 90.7% keyword detection rate. The results are
obtained at the equilibrium point on the keyword detection rate-
false alarm rate curve which reduces the impact of recognition
errors on the measured SRT value.

Furthermore, a simulation of the impact of recognizer error
on the SRT estimate is provided. In comparison to a manually
performed test, there is a bias of 0.2 dB on the SRT measured
with the automatic procedure. The standard deviation also in-
creases from 1.2 dB to 1.8 dB. We conclude that these results
are sufficiently small for using the automated test in practice.
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