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Abstract
Narrative speech can provide a valuable source of infor-

mation about an individual’s linguistic abilities across lexical,
syntactic, and pragmatic levels. However, analysis of narrative
speech is typically done by hand, and is therefore extremely
time-consuming. Use of automatic speech recognition (ASR)
software could make this type of analysis more efficient and
widely available. In this paper, we present the results of an
initial attempt to use ASR technology to generate transcripts
of spoken narratives from participants with semantic dementia
(SD), progressive nonfluent aphasia (PNFA), and healthy con-
trols. We extract text features from the transcripts and use these
features, alone and in combination with acoustic features from
the speech signals, to classify transcripts as patient versus con-
trol, and SD versus PNFA. Additionally, we generate artificially
noisy transcripts by applying insertions, substitutions, and dele-
tions to manually-transcribed data, allowing experiments to be
conducted across a wider range of noise levels than are pro-
duced by a tuned ASR system. We find that reasonably good
classification accuracies can be achieved by selecting appropri-
ate features from the noisy transcripts. We also find that the
choice of using ASR data or manually transcribed data as the
training set can have a strong effect on the accuracy of the clas-
sifiers.
Index Terms: automatic speech recognition, classification, pro-
gressive aphasia

1. Introduction
Primary progressive aphasia (PPA) is a neurodegenerative dis-
order in which language is the most affected aspect of cognitive
functioning. There are two main variants of PPA: progressive
nonfluent aphasia (PNFA), in which speech is hesitant and ef-
fortful, and semantic dementia (SD), in which speech is flu-
ent but with severe word findings difficulties [1]. A third sub-
type, logopenic progressive aphasia, has been identified in re-
cent years but is not considered here.

The features of narrative speech in each variant of PPA have
been characterized to some extent, but they are not yet fully un-
derstood. Evaluation of spoken output is an important part of di-
agnosis of PPA and in identification of the variant. From a clin-
ical perspective, analysis of narrative speech has the advantage
that it can provide a lot of information from a relatively brief
assessment. A narrative speech sample can contain rich infor-
mation about the speaker’s ability to choose appropriate content
and function words, construct sentences, and convey meaning.
Systematic analysis of narrative speech is typically done manu-
ally, which is time-consuming and may be prohibitively expen-
sive. The automated approach evaluated here has several advan-

tages. For example, this method enables simultaneous consid-
eration of multiple aspects of speech. Also, it should ultimately
provide greater sensitivity to changes occurring in the earliest
stages of disease, thereby facilitating early diagnosis. Simi-
larly, it should provide objective measures of changes over time
in language production, thereby enabling more accurate assess-
ment of disease progression; this is important for patients and
their families, as well as for evaluation of efficacy in drug trials
(as potentially disease modifying drugs become available).

Fully automated analysis of narrative speech will require
automatic speech recognition (ASR) in order to extract lexical
and syntactic features from acoustic signals. Despite major im-
provements in ASR technology over the past few decades, ac-
curacy for unrestricted (i.e., ‘dictation-style’) speech remains
decidedly imperfect, as described in the next section. In order
to estimate how effective a classifier of PPA and its subtypes
might be when given textual transcripts derived from ASR, a
wide range of potential system performances must be consid-
ered, to account for real-world variation. This research approxi-
mates various levels of ASR performance by randomly corrupt-
ing human transcripts according to pre-defined levels of error
and compares these results against actual output from a lead-
ing commercial dictation system. Error levels are quantified by
word-error rate (WER), which is the total number of erroneous
insertions, deletions, and substitutions of words in an ASR tran-
script, divided by the total number of words in a reference tran-
script1. Simulated ASR errors have been used in various con-
texts, such as training dialogue systems [2] and for testing the
safety of dictation systems for use in automobiles [3].

2. Related Work
In general, the accuracy of ASR systems on elderly voices tends
to decrease with the age of the speaker [4]. Elderly voices
typically have increased breathiness, jitter, shimmer, and a de-
creased rate of speech [4]. Older speakers may also exhibit ar-
ticulation difficulties, changes in fundamental frequency, and
decreased voice intensity [5]. These factors can result in speech
that is less intelligible to both human listeners and ASR sys-
tems. For example, Hakkani-Tur et al. [6] found that in auto-
matic scoring of a speech-based cognitive test, their ASR sys-
tem had a higher WER for healthy speakers over the age of 70
than for those under the age of 70, with WERs between 26.3%
and 34.1% for the elderly speakers, depending on the task and
the gender of the speaker, while the error rates ranged between
21.1% and 28.2% for the younger speakers.

1If the number of insertions is large, it can overwhelm the total num-
ber of words in the reference transcript, therefore allowing for WERs
above 100%.
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Effective speech recognition can be further challenged by
the presence of linguistic impairments such as those occurring
in PPA. To our knowledge, there has only been one previous
study on automatic speech recognition of PPA speakers. Peint-
ner et al. [7] analyzed speech from patients with PNFA and SD
as well as patients with a dementia affecting behavior and de-
portment, but not language. They achieved a WER of 37% for
SD and 61% for PNFA. They also tested a control group, who
had an average WER of 20%.

In this study, we use speech recognition as the input to a
system that can analyze a spoken narrative and predict whether
the speaker is cognitively normal or has a subtype of PPA. Peint-
ner et al. [7] also attempted this task, although they did not re-
port how the high error rates affected the lexical features stud-
ied or their classification accuracy. Other studies in this area
have used manually transcribed transcripts [8]. One strategy
which combines ASR technology with manual transcripts is to
use forced-alignment with manual transcripts to measure acous-
tic features such as rate of speech and length of pauses [9, 10].
However, for a speech analysis system to be available online or
as part of an in-home continuous monitoring system, there must
be no reliance on manual transcriptions at the word-level, which
forced-alignment requires.

3. Data

3.1. Narrative samples

Our data set comprises speech samples from 24 patients with
PPA and 16 age- and education-matched controls. Of the 24
PPA patients, 14 were diagnosed with PNFA and 10 with SD.
The speech samples were collected as part of a longitudinal
study on language impairment in PPA in the Department of
Speech-Language Pathology at the University of Toronto. See
Table 1 for demographic information about the participants.

Narrative speech samples were elicited following the proce-
dure described by Saffran et al. [11]. Participants were given a
wordless picture book of the well-known fairy tale “Cinderella”,
and were asked to look through the book. The book was then
removed, and participants were asked to tell the story in their
own words.

The narrative samples were recorded on a digital audio
recorder, and transcribed by trained research assistants. The
manual transcriptions include filled pauses, repetitions, and
false starts. Sentence boundaries were marked according to se-
mantic, syntactic, and prosodic cues. The SD patients produced
an average of 380 words and 20 sentences, the PNFA patients
produced an average of 302 words and 16 sentences, and the
control group produced an average of 403 words and 16 sen-
tences.

SD
(n = 10)

PNFA
(n = 14)

Controls
(n = 16)

Age 65.6 (7.4) 64.9 (10.1) 67.8 (8.2)
Years of education 17.5 (6.1) 14.3 (3.6) 16.8 (4.3)
Sex 3 F 6 F 7 F

Table 1: Demographic information for each participant group.
Averages (and standard deviations) are given for age and years
of education.

3.2. Features

Two types of features are extracted for each participant individ-
ually, namely textual transcripts and acoustic samples. From
these, we derive 31 lexical/syntactic features from the text tran-
scripts and 23 features from the acoustics, giving a total of 54
available features, described below.

3.2.1. Text features

A number of features can be extracted from the text transcripts.
Some of our features are based on the part-of-speech (POS) tags
assigned by the Stanford tagger [12]. SD patients have been
observed to produce proportionally fewer nouns and more verbs
and pronouns, while PNFA patients tend to produce more nouns
and fewer verbs [13, 14, 15]. PNFA patients also tend to omit
function words, such as determiners or auxiliaries [13, 16].

We look up the frequency of each word in the SUBTL
norms, which are derived from a large corpus of subtitles from
film and television [17]. We calculate the average frequency
over all words as well as specically for nouns and verbs. Simi-
larly, we calculate the average familiarity, imageability, and age
of acquisition of the words in each transcript using the com-
bined Bristol norms and Gilhooly-Logie norms [18, 19]. Each
word in these psycholinguistic databases has been ranked ac-
cording to human perception of how familiar the word is, how
easily the word evokes an image in the mind, and the approx-
imate age at which a word is learned. Frequency, familiarity,
imageability, and age of acquisition have all been found to in-
fluence speech production in aphasia [14, 20, 21, 22, 23]. The
coverage of these norms on our data is variable. The frequency
norms have excellent coverage – between 0.92 and 0.95 across
the three groups on the manually transcribed data. The cov-
erage for the familiarity, imageability, and age of acquisition
norms is not as good, possibly due to the fact that the authors of
the norms specifically excluded high frequency words [18]. The
coverage for those norms ranges from 0.25 to 0.31 for all con-
tent words across the three groups for the manual transcripts.

From the transcripts we also measure such quantities as the
average length of the words and the type-token ratio, as well
as measures of fluency such as the number of filled pauses
produced. We measure the combined occurrence of all filled
pauses, as well as the individual counts for “um” and “uh”, since
it has been suggested that they may indicate different types of
hesitation [24].

In previous work using manual transcripts, researchers have
also examined measures which can be derived from parse trees,
such as Yngve depth, or the number and length of different syn-
tactic constructions [8, 9]. However, such parse trees will de-
pend on the location of the sentence boundaries in the transcript,
the placement of which can be a difficult task for ASR systems
[25]. Indeed, the Nuance system used here does not place punc-
tuation except by explicit command. For the purposes of this
preliminary study, we avoid using features which depend on ac-
curate sentence boundaries.

3.2.2. Acoustic features

We follow the work of Pakhomov et al. [10] and measure pause-
to-word ratio (i.e., the ratio of non-silent segments to silent seg-
ments longer than 150 ms), mean fundamental frequency (F0)
and variance, total duration of speech, long pause count (> 0.4
ms), and short pause count (> 0.15 ms and < 0.4 ms). To this
we add mean pause duration and phonation rate (the amount of
the recording spent in voiced speech) [9], as well as the mean
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and variance for the first 3 formants (F1, F2, F3), mean instan-
taneous power, mean and maximum first autocorrelation func-
tion, skewness, kurtosis, zero-crossing rate, mean recurrence
period density entropy (a method for measuring the periodic-
ity of a signal, which has been applied to pathological speech
generally [26]), jitter [27], and shimmer.

Slow, effortful speech is one of the core symptoms of
PNFA, and apraxia of speech can be an early feature [1]. PNFA
patients may make speech sound errors and exhibit disordered
prosody [1, 28]. Similarly, typical F0 range and variance have
been shown to be indicative of articulatory neuropathologies
within the context of speech recognition [29, 30]. In contrast,
speech production is generally spared in SD, although SD pa-
tients may produce long pauses as they search for words [13].

4. Methods
4.1. ASR and simulated errors

We use two methods to produce errorful textual transcripts. The
first method represents the current leader in commercial dic-
tation software, Nuance Dragon NaturallySpeaking Premium;
here, audio files are transcribed by Nuance’s desktop dictation
software. The second method corrupts human-produced tran-
scripts according to pre-defined levels of WER; this method al-
lows for an indirect approximation of the performance given a
wide range of potential alternative ASR systems.

The Nuance Dragon NaturallySpeaking 12.5 Premium for
64-bit Windows dictation system (hereafter, ‘Nuance’) is based
on traditional hidden Markov modeling of acoustics and, his-
torically, on trigram language modeling [31]. This system is
initialized with the default ‘older voice’ model suitable for indi-
viduals 65 years of age and older. The default vocabulary con-
sists of 150,478 words, plus additional control phrases for use
during normal desktop dictation (e.g., “new paragraph”, “end
of sentence”); this feature cannot be deactivated. The core vo-
cabulary, however, can be changed. In order to get a more re-
stricted vocabulary, all words used in our manually transcribed
Cinderella data set plus all words used in a selection of 9 stories
about Cinderella from the Gutenberg project (totalling 22,168
word tokens) were combined to form a reduced vocabulary
of 2633 word types. Restricted vocabularies, by their nature,
have higher random baselines and less phonemically confusable
word pairs, usually resulting in proportionally higher accuracies
in ASR. The Nuance system scales the language model to the
reduced vocabulary.

For the simulated ASR transcripts, each word in the man-
ual transcript is modified with a probability equal to the desired
WER. In this set of experiments, we use a language model ob-
tained from the Gigaword corpus [32], since the Nuance lan-
guage model is proprietary and not accessible to the user. A
word w can be modified in one of three ways:

• Substitution – w is replaced with a new word wS .

• Insertion – w is followed be a new word wI .

• Deletion – w is removed.

In the case of insertion, the word to be inserted is chosen ran-
domly according to the bigram distribution of the language
model. That is, words that frequently occur after w are more
likely to be chosen as wI . If w is not found in the Gigaword vo-
cabulary, then wI is chosen randomly according to the unigram
distribution of the language model. In the case of substitution,
the new word is randomly chosen from a ranked list of words

with minimal phonemic edit distance from the given word, as
computed by the Levenshtein algorithm.

Once it has been determined that a word will be modified,
it is assigned one of the above modifications according to a pre-
defined distribution. Different ASR systems may tend towards
different distributions of insertion errors (IE), substitution errors
(SE), and deletion errors (DE). We create data noise according
to three distributions, each of which favours one type of error
over the others: [60% IE, 20% SE, 20% DE], [20% IE, 60%
SE, 20% DE], and [20% IE, 20% SE, 60% DE]. We then also
adjust these proportions according to proportions observed in
Nuance output, as described in Section 5.

4.2. Classification

We use stratified leave-one-out cross-validation to test our di-
agnostic classifiers. For each fold, one transcript is removed as
test data. We then apply a simple feature selection algorithm to
the remaining transcripts: we calculate a Welch’s t-test for each
feature individually and determine the significance of the dif-
ference between the groups on that feature. We then rank each
feature by increasing p-value, and include as input to the clas-
sifier only the top ten most significant features in the list. For
each fold, different training data is used and therefore differ-
ent features may be prioritized in this manner. Similar methods
for feature selection have been used in previous studies on the
classification of dementia subtypes [7, 9, 33].

Once the features have been selected, we train three types
of classifier: naı̈ve Bayes (NB), support vector machine with
sequential minimal optimization (SVM), and random forests
(RF). The classifiers are then tested with the same subset of
features derived from the held-out transcript. This procedure
is repeated for every transcript in the data set, and the average
accuracy is computed.

We consider two classification tasks, PPA-vs.-control and
SD-vs.-PNFA, since these binary tasks allow for less confusion
than a trinary classification task and can be cascaded. For each
task, there are two possible feature sets: text features only, or a
combination of text and acoustic features. There are also two
possible training sets for each task: i) the classifiers can be
trained on the human-transcribed data and tested on the ASR
data2, and ii) the classifiers are both trained and tested on the
noisy ASR (or simulated ASR) data. We test our classifiers on
each combination of these variables.

5. Results
5.1. Features and feature selection

First, we examine whether the feature selection method selects
different types of features depending on the WER. It might be
expected that as the WER increases, the text features will be-
come less significant. Figure 1 shows the p-values, averaged
across folds, for the text and acoustic features selected at each
WER for each noise distribution. Note that the values of the
acoustic features do not change with the noise levels, but the
average p-value will change as different features are selected in
each case, depending on the values of the text features. For the
case of PPA versus controls, a mix of text and acoustic features
are chosen, and the features tend to be significant at p < 0.05,
even when the error rate is high. A combination of text and
acoustic features are also selected for SD versus PNFA at all

2This represents the scenario in which researchers have access to a
corpus of manual transcriptions for training purposes
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noise levels; however in this case the mean p-values are of-
ten not significant, suggesting that the features are not as dis-
criminative between these groups. This effect is reflected in the
lower classification accuracies for the SD versus PNFA task re-
ported below. So, Figure 1 does not support the hypothesis that
text features become irrelevant at the highest noise levels, but
rather suggests that the transcripts still contain some informa-
tion which is at least as valuable as the acoustic information in
the speech signal.

p-value PPA
mean

Control
mean

Nuance default vocabulary
verb imageability 0.0006 401 354
noun frequency 0.002 3.51 3.26
noun familiarity 0.04 575 558
Nuance reduced vocabulary
average word length 0.003 5.44 6.21
noun frequency 0.006 3.13 2.77
noun imageability 0.01 487 554
noun familiarity 0.02 558 531
frequency 0.04 3.60 3.20

Table 2: Significant text features (p < 0.05) for PPA vs. Con-
trols using the Nuance system with default and reduced vocab-
ularies.

p-value SD
mean

PNFA
mean

Nuance default vocabulary
noun familiarity 0.002 596 560
familiarity 0.002 594 568
Nuance reduced vocabulary
None N/A N/A N/A

Table 3: Significant text features (p < 0.05) for SD vs. PNFA
using the Nuance system with default and reduced vocabularies.

Some text features are still significant in the Nuance data
as well, despite the high WER. Table 2 shows the text features
that were significant (p < 0.05) when comparing PPA and con-
trols using the two Nuance models. As before, since the feature
set changes with each fold in the cross-validation, the p-value
is an average across folds. The means for the two groups are
also shown to indicate the direction of the difference. Using the
default vocabulary, there are three significant text features: verb
imageability, noun frequency, and noun familiarity. These three
features are all significant in the manually-transcribed data as
well, and with the same direction. For the system trained on the
reduced vocabulary, there are five significant text features, as in-
dicated, only one of which (noun imageability) is not significant
in the manual transcripts. All five features show differences in
the same direction. Table 3 shows that only noun familiarity
and overall familiarity are significant in the SD vs. PNFA case
using the default vocabulary system, as they are in the manu-
ally transcribed data, with the difference in the same direction.
There are no significant text features using the reduced vocabu-
lary system.

The significant acoustic features for each classification task
are shown in Tables 4 and 5. These features remain the same re-
gardless of the transcription method. For a complete discussion
of the acoustic features of this data set, see [33].

p-value PPA
mean

Control
mean

phonation rate 0.0000006 0.733 0.920
mean duration of

pauses
0.00002 37 800 14 500

mean recurrence
period density
entropy

0.00002 0.549 0.477

long pause count 0.0006 34.7 10.6
skewness 0.0006 -0.0733 -0.532
mean instantaneous

power
0.0003 -26.1 -22.1

short pause count 0.002 49.9 22.1
kurtosis 0.005 20.4 14.1
shimmer 0.05 0.00560 0.00748

Table 4: Significant acoustic features (p < 0.05) for PPA vs.
Controls.

p-value SD
mean

PNFA
mean

mean first autocor-
relation function

0.02 0.848 0.730

Table 5: Significant acoustic features (p < 0.05) for SD vs.
PNFA.

5.2. Recognizing PPA speech

Table 6 shows the WER of the Nuance system across pop-
ulations and vocabularies. Somewhat surprisingly, using the
reduced vocabulary reduces accuracy considerably, despite all
words in the test set being present in the vocabulary. A possi-
ble explanation may be found in the distribution of error types
across the uses of both vocabularies, which is shown in ta-
ble 7. In particular, when using the reduced vocabulary, Nu-
ance makes significantly more deletion errors, which may be
attributed to a lower confidence assigned to its word sequence
hypotheses which in turn may be attributed to a language model
that is not adapted to non-default vocabularies. A general lan-
guage model may assign a high lexical probability to a series
of words that are phonemically similar to an utterance but if
those words are not in the reduced vocabulary, a more domain-
specific sequence of words may be assigned a low lexical prob-
ability and therefore a low confidence. When confidence in a
hypothesis is below some threshold, that hypothesis may not be
returned, resulting in an increase in deletion errors. Not having
access to these internals of the Nuance engine prohibits modifi-
cation at this level.

Another point to highlight is that, given Nuance’s de-
fault vocabulary, there is no significant difference between the
WER obtained with the control and PNFA groups (t(26.78) =
−0.62, p = 0.54, CI = [−0.16, 0.08]), nor with the con-

Default Vocabulary Reduced Vocabulary
SD 73.1 98.1
PNFA 67.7 97.3
Control 64.0 97.1
All 67.5 97.5

Table 6: Mean word error rates for the Nuance systems on each
of the participant groups.
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(a) PPA vs. control, 0.2 IE, 0.2 SE, 0.6 DE (b) PPA vs. control, 0.2 IE, 0.6 SE, 0.2 DE (c) PPA vs. control, 0.6 IE, 0.2 SE, 0.2 DE

(d) SD vs. PNFA, 0.2 IE, 0.2 SE, 0.6 DE (e) SD vs. PNFA, 0.2 IE, 0.6 SE, 0.2 DE (f) SD vs. PNFA, 0.6 IE, 0.2 SE, 0.2 DE

Figure 1: Acoustic features (filled bars) and text features (empty bars) selected for the feature sets at each WER for each distribution
of insertion errors (IE), substitution errors (SE), and deletion errors (DE). Each bar represents one standard deviation from the mean,
and the lines indicate the minimum and maximum values.

Default
Vocabulary

Reduced
Vocabulary

Insertion errors 0.00602 0.00008
Substitution errors 0.39999 0.11186
Deletion errors 0.59398 0.88804

Table 7: Distribution of error types for the Nuance systems.

trol and SD groups (t(23.77) = −1.47, p = 0.16, CI =
[−0.22, 0.04]), although the differences in Table 7 might seem
large.

5.3. Diagnosing PPA and its subtypes

We evaluate the accuracy of diagnosing PPA and its subtypes
based on the selected features across the three classification
methods using the simulated ASR method. In practice, clas-
sification models might be trained on data that have been man-
ually transcribed by humans (clinicians or otherwise). How-
ever, as the amount of data increases, this becomes less prac-
tical and it may become necessary to train these models from
transcripts that were automatically generated from ASR. We
replicate our experiments once on data that have been man-
ually transcribed and once on the same data, but with tran-
scripts corrupted by synthetic word errors (in which case the
training data and test data have the same WER). Classifiers
trained on human-produced transcripts have an average accu-
racy of 65.71% (σ = 12.42) and those trained on ‘noisy’
transcripts have an average accuracy of 70.72% (σ = 13.89),
which is significant at heteroscedastic t(543) = −4.47, p <
0.00001, CI = [−0.072,−0.028]. These differences can be
observed in Figure 2. Interestingly, the classifiers trained with

‘noisy’ transcripts outperform those trained with ‘clean’ tran-
scripts fairly consistently in the PPA vs. control task, but this
is far less pronounced (and to some extent reversed) in the SD
vs. PNFA task. This may be partially explained by a significant
three-way interaction between WER, the task (i.e., the partici-
pant groups), and the training set (i.e., ‘noisy’ vs. ‘clean’) on a
followup ANOVA (F (6) = 2.43, p < 0.05).

This trend is also apparent when the classifiers are tested
using the Nuance transcripts. Figure 3 shows the classifica-
tion accuracies for each classifier on each diagnostic task using
the data generated using the default and reduced vocabularies.
When classifiying PPA versus controls, training on the ‘noisy’
Nuance data always leads to equal or greater accuracies than
training on the ‘clean’ (human-transcribed) data. For SD ver-
sus PNFA, the results are mixed, although the results from the
reduced vocabulary suggest the opposite trend.

We compare the diagnostic accuracies across all classi-
fiers given transcripts from Nuance using the reduced vocab-
ulary with the accuracies of the synthetic WER method using
the nearest WER (100%) and the associated error type dis-
tribution (i.e., 10% substitutions, 90% deletions, over all er-
rors). We find no difference between results obtained with
Nuance data and those obtained with the synthetic method
(t(44.25) = 1.1072, p = 0.27, CI = [−0.04, 0.13]). We
repeat this analysis with the default Nuance vocabulary and
its equivalent synthetic WER (70%) and distribution (i.e., 40%
substitution, 60% deletion) and again find no significant differ-
ence (t(44.61) = 1.46, p = 0.15, CI = [−0.02, 0.11]). Here,
distributions of WER are approximately Gaussian over the var-
ious parameterizations of the systems. The lack of apparent
difference in diagnosis when using the Nuance ASR and the
synthetic method supports the use of the latter in these experi-
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(a) PPA vs. control (text) (b) PPA vs. control (text & acoustic)

(c) SD vs. PNFA (text) (d) SD vs. PNFA (text & acoustic)

Figure 2: Accuracy in diagnosing the indicated classes given features derived from potentially error-full textual transcriptions alone
and in combination with features derived directly from the acoustics. Lines marked with x’s, circles, and pluses indicate the use of the
naı̈ve Bayes, random forest, and support vector machine classifiers. Solid lines indicate those trained with human-transcribed (clean)
data and dashed lines indicate those trained with corrupted data.

ments.
Among the simulated ASR data, an n-ary ANOVA reveals

significant main effects for each of the classification problems
(PPA-vs.-control or PNFA-vs.-SD; F (1) = 124.19, p = 0),
WER (F (5) = 31.69, p = 0), error distribution (proportions
of IE, SE, and DE; F (4) = 6.32, p < 0.0005), and training
set (‘noisy’ or ‘clean’; F (1) = 35.41, p = 0) on the accu-
racy of classification; there is no effect of the classifier, however
(F (2) = 2.27, p = 0.1039). There were significant interaction
effects between WER and the classification problem (F (5) =
5.18, p < 0.0005), error distribution (F (12) = 2.2, p < 0.05),
and the training set (F (5) = 4.95, p < 0.0005), but not with
the data subset (text or text with acoustics; F (5) = 1.42, p =
0.2146), or the classifier (F (10) = 0.49, p = 0.8993).

6. Discussion
Our goal is to provide assistive technologies, including diag-
nostic software, to various populations with pathological speech
and language, including those with PPA. This study represents
an initial step towards ASR for this population. One main result
of this research is that fairly accurate diagnosis of PPA and of
its subtypes can remain relatively accurate, even at very high
levels of WER, by selecting appropriate features from the data
at training time. Acoustic features are valuable, as they remain
constant as the WER increases. However, our data suggest that
some features from the text can still be informative, even when
the transcripts are very noisy.

One important direction for future work is to improve ASR
for clinical populations. Clearly, modern speech recognition has

greater difficulty in recognizing PPA speech relative to speech
the general elderly population, especially for individuals with
SD. While more appropriate acoustic models built for older-
adult voices will be important (based on available data), a focus
on improving language modeling and the pruning of the lattices
produced by hidden Markov models may be more fruitful if the
cause of the pathology is semantic or lexical.

Another limitation of our approach is that the t-test method
for feature selection does not consider interactions between fea-
tures. In the future we would like to examine these interactions,
particularly between text and acoustic features.

In this study we did not take into account any syntactic fea-
tures, although agrammatism and/or syntactic simplification are
characteristic of PNFA. Presumably, including information of
this type could increase the classification accuracy. One ap-
proach would be to apply a sentence boundary detection al-
gorithm to the ASR transcripts and extract traditional syntac-
tic complexity measures (e.g. Yngve depth). Another approach
would be to explore localized complexity metrics which do not
depend on full sentence parses.
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