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Abstract 
Although still in experimental stage, articulation-based silent 
speech interfaces may have significant potential for facilitating 
oral communication in persons with voice and speech 
problems. An articulation-based silent speech interface 
converts articulatory movement information to audible words. 
The complexity of speech production mechanism (e.g., co-
articulation) makes the conversion a formidable problem. In 
this paper, we reported a novel, real-time algorithm for   
recognizing words from continuous articulatory movements. 
This approach differed from prior work in that (1) it focused 
on word-level, rather than phoneme-level; (2) online 
segmentation and recognition were conducted at the same 
time; and (3) a symbolic representation (SAX) was used for 
data reduction in the original articulatory movement time-
series. A data set of 5,900 isolated word samples of tongue and 
lip movements was collected using electromagnetic 
articulograph from eleven English speakers. The average 
speaker-dependent recognition accuracy was up to 80.00%, 
with an average latency of 302 miliseconds for each word 
prediction. The results demonstrated the effectiveness of our 
approach and its potential for building a real-time articulation-
based silent speech interface for clinical applications. The 
across-speaker variation of the recognition accuracy was 
discussed. 

Index Terms: silent speech recognition, laryngectomy, 
support vector machine, SAX, time-series 

1. Introduction 
Persons who lose their voice after laryngectomy (a surgical 
removal of the larynx due to the treatment of cancer) or who 
have speech impairment struggle with daily communication 
[1]. In 2012, more than 52,000 new cases of head and neck 
cancers (including larynx, pharynx, etc.) were estimated in the 
United States [2]. Currently, there are only limited treatment 
options for these individuals, which include (1) “esophageal 
speech”, which involves oscillation of the esophagus and  can 
be difficult to learn; (2) electrolarynx, which is a mechanical 
device resulting in a robotic-like voice; and (3) augmented and 
alternative communication (AAC) devices (e.g., text-to-speech 
synthesizers operated with keyboards), which are limited by 
slow manual text input [1]. New assistive technologies are 
needed to provide a more efficient oral communication mode 

with natural voice for those individuals. 
Silent speech interfaces (SSIs), although still in early 

development stages [3] (e.g., speaker-dependent recognition, 
small-vocabulary, devices are not ready for clinical use), may 
provide an alternative interaction modality for persons with 
voice and speech problems. The common purpose of SSIs is to 
convert non-audio articulatory data to text that drives a text-to-
speech (TTS) synthesizer (e.g., [4]) (see Figure 1 for a 
schematic of our SSI design). Potential articulatory data 
transduction methods for SSIs include ultrasound [5, 6], 
surface electromyography electrodes [7, 8], and 
electromagnetic articulograph (EMA) [9, 10, 11]. The current 
project used EMA, which registers the 3D motion of sensors 
adhered to the tongue and lips. 

One major challenge for building effective SSIs is 
developing accurate and fast algorithms that recognize words 
or sentences based on articulatory data (i.e., without audio 
information). Articulatory data have been successfully used to 
improve the accuracy of voiced speech recognition from both 
healthy talkers [12, 13] and neurologically impaired 
individuals [14]. This typically involves the use of articulatory 
features (AFs), which include lip rounding, tongue tip 
position, and manner of production, for example. Phoneme-
level AF-based approaches have typically obtained word 
recognition accuracies less than 50% [13] because articulation 
can vary significantly within those categorical features 
depending on the surrounding sounds and the speaking context 
[15]. 

These challenges in phoneme-level recognition motivate a 
higher unit level of articulatory recognition, for example, 
word-level or sentence-level. Although sentence-level 
recognition accuracy is high [9], it lacks the scalability of 
phoneme- and word-level recognition because all sentences 
are required to be known prior to prediction. Word-level 
recognition may have better scalability than sentence-level 
recognition and the potential for higher accuracy than 
phoneme-level recognition. Word-level recognition from 
acoustic data has outperformed monophone recognition by 
approximately 25% [16, 17]. However, whole-word 
recognition has rarely been investigated in articulatory data 
probably due to logistic difficulty of collecting articulatory 
data [10, 11]. 

Online word recognition from continuous articulatory 
movements can be extremely challenging because word 
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boundaries (onset and offset) are difficult to identify. Recent 
works have shown offline word classification (word 
boundaries are known) accuracy can be greater than 90% for a 
small vocabulary [10, 11]. However, because of word 
segmentation issues, online recognition accuracy can be 
significantly lower than offline classification accuracy. Online 
word segmentation based on articulatory movements has 
rarely been attempted [18]. A threshold (e.g., 2 SD) of the 
articulatory movements has been successfully used for isolated 
word datasets [19, 20]. Such amplitude-based segmentation 
may not be well suited for words produced in a continuous 
sequence because of co-articulation (illustrated in Figure 1) or 
for words within sentences (connected speech). Co-articulation 
is an effect characterized by a sound is affected by its adjacent 
sounds [21, 22]. 

Figure 2 illustrates the articulatory movements for a word 
sequence with co-articulation produced by one of the 
participants. The top panel shows the continuous motion of 
sensors (y and z coordinates, where y is vertical and z is front-
back) attached on the tongue and lips. T1, T2, T3, and T4 are 
four sensors attached on the midsaggital line of the tongue, 
from tip to back; UL is upper lip; LL is lower lip. Details of 
the coordinate system and the labels of the sensors are 
provided in Section 4. The bottom panel shows the 
synchronously recorded audio.  

The goal of this project was to investigate word 
recognition from continuous articulatory movements. A novel, 
real-time algorithm for word recognition from continuous 
stream of articulatory movements has been recently proposed 
[10]. The algorithm was designed to solve the online 
segmentation and recognition problems simultaneously. The 
algorithm is characterized by the following: recognition is at 
the word level rather than the phoneme- or sentence-level; 
recognition employs a dynamic thresholding technique based 
on patterns in the probability change returned by a classifier; 
and the algorithm is extensible (i.e., it can be embedded with a 
variety of classifiers). The algorithm has been tested on the 
minimally processed articulatory movements [10]. Although 
the results were promising (missing only 1.93 words on a 
sequence with twenty-five words), false positives caused a 
relatively low overall accuracy. 

The current project implemented the following three 
strategies for improving word recognition accuracy: (1) using 
symbolic aggregation approximation (SAX) representation to 
reduce the local variation in the original articulatory 
movement time-series data, (2) adding a look-back strategy to 
handle a situation in which two words are so close that the 
onset of the second word may not be accurately identified, and 
(3) using speaker-dependent thresholds to determine the word 
candidates during online recognition. A phonetically-balanced 

and isolated word dataset of tongue and lip movements was 
collected using electromagnetic articulograph and used to 
evaluate the effectiveness and efficiency of the improved 
algorithm.   

2. Design & Method 
The design of our articulation-based silent speech interface is 
illustrated in Figure 1, which contains three major components 
[9, 10]: (a) data acquisition, (b) online (word) recognition, and 
(c) sound playback or synthesis. Data acquisition is performed 
using an electromagnetic articulograph that tracks the motion 
of sensors attached on a speaker’s tongue and lips. 

The focus of this paper is the second component, online 
word recognition, whose goal is to recognize a set of isolated 
words from continuous articulatory data (without using audio 
data). The core recognition problems are to (1) convert a time-
series of spatial configurations of multiple articulators to time-
delimited words, and (2) identify the onset of those recognized 
words. Here, a spatial configuration is an ordered set of 3D 
locations of the sensors. In this whole-word recognition 
algorithm, segmentation and identification are conducted 
together in a variable-size sliding window. The algorithm is 
based on the premise that a word has its highest matching 
probability given an observation window with an appropriate 
starting point and width. A trained machine learning classifier 
that derives these matching probabilities is embedded into the 
algorithm, as described in the rest of this section. In the future, 
this algorithm will serve as the recognition component of our 
articulation-based SSI. 

2.1. Symbolic representation of articulatory time-
series data  

SAX is a symbolic representation technique [23] that has been 
widely used in time-series data pattern analysis (e.g., [24, 25, 
26]). The main idea of SAX is to represent the original time-
series amplitude using discrete symbols that can still capture 
the patterns. The potential benefits of SAX are (i) efficient 
dimensionality reduction while retaining essential features; 
and (ii) lower bounding of the distance measure on the original 
series. To our best knowledge, however, SAX has not been 
used for articulatory movement time-series data analysis. 

The underlying contention behind representing the tongue 
motion data in the form of symbols is to capture the motion 
pattern for a particular word and to reduce the local variation.  
If the motion trajectory can be captured in terms of symbols 
that represent different regions in the motion distribution 
space, then the symbolic representation should reduce the 
amount of data required while overcoming local variations and 
scaling effects, thus may enable efficient comparison of the 

  
Figure 1. Three-component design of the articulatory movement-based silent speech interface. 
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motion data of different words with a higher accuracy. 
In this study, SAX symbolic representation was used to 
discretize the tongue and lip motion time series data. In SAX, 
each time sequence is z-normalized (mean = 0 and SD = 1), 
and split into w equal segments. For each segment, the mean is 
calculated and a symbol is assigned based on a set of 
breakpoints that divide the distribution space into α 
equiprobable regions, where α is the alphabet size. When α is 
given, the breakpoints (that separate the space to α regions) are 
definite. For the definition of breakpoints, please refer to [23].  
Thus, each time subsequence is converted into a string of 

length w, formed by symbols from an alphabet of size α.  Both 
the length w and the alphabet size α are pre-specified.  
Theoretically, an optimal combination of the two parameters – 
w and α – should be able to efficiently represent the variation 
in the sequences of any given time series data. Figure 3 
illustrates how a time-series is converted to string of symbols 
(using w = 5, and α = 6). 

In this project, however, a word sample contains multiple 
time sequences, multi-dimensional coordinates (y and z) from 
multiple sensors. The following procedure was used to convert 
a data sample of original articulatory movement data to a 
string of symbols. The original data captured from all sensors 
was first time-normalized and amplitude shifted to have a 
mean of zero. These data arrays were then combined into a 
single-dimension data vector (with sequences of multi-
dimension data from multiple sensors). The data vector was 
then converted into a single SAX vector.  The reason for using 
concatenation of all sensor data (rather than converting on 
each sensor separately) to generate a single SAX vector is to 
preserve the relative variation in amplitude across sensors. 
Conversion to SAX reduced the data by a constant factor 
(number of data points for each sensor / w).  The SAX vectors 
were served as input to the training and testing phases of the 
recognition module.  

The optimal SAX parameters (w and α) needed to be 
determined before word recognition experiment could be 
conducted. Most of the words in our dataset were of the 
phonetic structure CVC (consonant-vowel-consonant) or 
CCVCC, thus, w = 5 was chosen as the length of symbol string 
for capturing the motion characteristics. A preliminary 
experiment was conducted to determine the best α value.  
Figure 4 gives the average word off-line classification 
accuracy across speakers for different α values (from 3 to 15), 
and w = 5. α = 6 resulted in the highest classification accuracy, 
and was thus used in the online recognition experiment, which 
will be described in the next two sub-sections. 

 
Figure 2.  Example of a sequence of tongue and lip movements (top panel) of twenty five words and synchronously 
recorded sounds (bottom panel). Labels of the tongue and lip sensors are described in text. The articulatory movement 
data was low-pass filtered (20 Hz). In the acoustic waveform panel, the numbers in blue above words are the actually 
occurrence time of that word.  

 
Figure 3. Example of a symbolic representation of 
articulatory movement time-series data using SAX; 
the blue curve is the z-scored vertical coordinate 
of tongue tip producing a word “job”; the red 
segments are the discretized results. The original 
articulatory time-series data are finally converted 
into a string of symbols “64123”.  
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2.2. Model training  
Support vector machine (SVM) [27], a widely used machine 
learning classifier, was used to recognize words in this project. 
SVMs are soft margin classifiers that find separating 
hyperplanes with maximal margins between classes in high 
dimensional space [28]. Model training was conducted by 
training a SVM using pre-segmented multi-dimension 
articulatory movement data from multiple sensors associated 
with known words. A kernel function is used to describe the 
distance between two data points (i.e., u and v in Equation 1). 
A radial basis function (RBF) was used as the kernel function 
in this experiment, where λ is an empirical parameter: 

||)||1exp(),( vuvuKRBF −−= λ              (1) 

Details of the implementation of SVM used in this experiment 
were described in [28].  

The training component was developed off-line before the 
SSI was deployed in a real-time application. Therefore, the 
time required to build the model is not a relevant problem. 
Rather, the time taken for a trained model to predict words is 
an important measure for evaluating real-time applications. To 
obtain a high speed in prediction, input data was minimally 
processed and converted to SAX symbols before being fed 
into the SVM. The sampled motion paths of all articulator 
were time-normalized to a fixed-width (SVMs require samples 
to have a fixed number of values) and concatenated as one 
vector of attributes. The vector was then converted to SAX 
symbols, which formed a word sample. To understand the 
improvement of using SAX itself, we compared the offline 
classification accuracy using SAX and using the minimally 
processed original time-series data (used in [10]). 

2.3. Online recognition 
A prediction window with variable boundaries was used to 
traverse the sequence of tongue and lip movement data to 
recognize words and their locations (onset) within the window 
based on the probabilities returned by LIBSVM, which 
extends the generic SVM by providing probability estimates 
transformed from SVM decision values [28]. The SVM was 
trained offline using pre-segmented articulatory movement 
data. Pseudo-code of the original whole-unit recognition 
algorithm is provided in [9].  

The major steps of the improved word recognition 

algorithm are described as below. Steps 1 to 3 are for finding 
word candidates; Steps 4 to 6 are to verify those candidates; 
Step 7 is sound playback of recognized words. 

In Step 1 to 3 (Figure 5), word candidates are identified 
within the prediction window based on the probabilities 
returned from the trained SVM. At each time point t, all 
possible word lengths (within the length range of training 
words with a step size ∆t) are considered and the maximum 
probability is returned as the probability for time point t. The 
word length in our list ranges from 370 to 885 ms. The offset 
of the probability function varied considerably across words, 
which made it difficult to identify a sensitive candidate 
threshold. Therefore, the probability associated with each 
word was baseline-corrected by subtracting the average 
probability derived from the first 600 ms of the test sequence. 
Candidates are identified in a prediction window (represented 
by its left and right boundaries, wl and wr) when probability 
values exceed a candidate threshold (thresc). The candidate 
threshold was obtained empirically from training data. In the 
current experiment, a single constant threshold was used for 
all words (but varies for different subjects). In the future, each 
word will have its own threshold for each subject. In this 
speaking-dependent recognition experiment, the threshold 
varied slightly for different subjects (ranged from 0.30 to 
0.40).  

If no candidates are found in the current prediction 
window, wr moves forward (to get more data), and the process 
goes back to step 1, until wr ≤ wl + lmax, where lmax is the 
maximum word length in this data set. 

In Step 4, a candidate is verified based on probability 
change trend. If the probabilities for that word are decreasing 
in a time span of half of the minimum word length, implying 
ongoing decreases, the candidate is confirmed; otherwise, the 
decision-making is delayed. This strategy is to confirm a word 
right after the peak probability of the word happens, while the 
peak probability is unknown in online recognition. 

Look-back strategy. When the currently recognized word 
is very close to the next word, the location of wl may be 
erroneously located after the actual beginning of the next 

 
Figure 5. Schematic of the improved word recognition 
algorithm from continuous articulatory movement data. 

   
Figure 4. Average offline classification accuracy 
across speakers using different α values. 
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word.  This situation may cause error predictions, which was 
not considered in [10]. A look-back strategy was introduced to 
address this problem in this experiment (Step 5). A threshold 
threslook-back (> candidate threshold thresc) is defined first. 
When a word candidate was found at time tc with probability 
pc, if pc ≤ threslook-back, the window location before tc was saved 
as the candidate predicted time location, which means wl = wl 
– ∆t. In the current setting, wl takes at most one step back 
because two or more step size back is unlikely to happen in 
real articulatory movement data (otherwise the two words may 
have overlap). Also to avoid dead loop of the execution, this 
procedure executes at most once in the implementation of the 
algorithm. 

Time Location Constraint allows only one word to occur 
within each time span (Step 6). A time span must not be less 
than the minimum word length in the training data (i.e., 370 
ms). If more than one word candidate is found within a time 
span, only the one with the highest probability is retained in 
the recognized word list. 

In Step 7, after playing prerecorded audio samples of 
recognized words, the left boundary of the prediction window 
(wl) moves to wr. The whole procedure (Step 1 to 7) is 
repeated until the rightmost boundary of the prediction 
window (wr) reaches the end of the input sequence.  

2.4. Evaluation  
Recognition accuracy and processing time were used to 
evaluate the performance of the word recognition algorithm. 

A word prediction is correct if the expected word is 
identified within half a second of its actual occurrence time. 
That is, both missing values and wrongly predicted occurrence 
times are considered as errors. A false positive is a word that is 
recognized at a time point where there is actually no word.  
Figure 6 illustrates the word probability distribution on a 
selected sequence. In this example, all twenty-five words were 
correctly recognized. 

Two measures were used to evaluate the efficiency of this 
algorithm: prediction location offset (machine-independent) 
and prediction processing time, or latency (machine-
dependent). Prediction location offset was defined as the 
difference in location on a sequence between where a word is 
actually spoken and where it is recognized [29]. The 
prediction location offset provides an estimate of how much 
information is needed for predicting a word. Latency is the 
actual CPU time needed for predicting a word. 

3. Data Collection 

3.1. Participants and stimuli 
Eleven healthy native English speakers participated in data 
collection. Each speaker participated in one session in which 
he/she repeated a sequence of twenty-five words (i.e., one of 
the four phonetically-balanced word lists in [30]) multiple 
times.  

Subjects, who were blinded to the specific purpose of the 
research, were asked to pronounce the target words in their 
habitual speaking rate and loudness. Thus, the production 
contained co-articulation between adjacent words, although 
the co-articulation might not be similar to that in connected 
speech. 

3.2. Tongue motion tracking devices 
The electromagnetic articulograph (EMA) AG500 (Carstens 
Medizinelektronik GmbH, Bovenden, Germany) was used to 
collect the 3-D movement time-series data of the tongue, lips, 
and jaw for ten of the eleven participants. Wave Speech 
Research System (Northern Digital Inc., Waterloo, Canada) 
was used for the other participant. The two devices are based 
on the same electromagnetic tracking technologies [31, 32]. 
Both devices record tongue movements by establishing a 
calibrated electromagnetic field in a cube that induces electric 
current into tiny sensor coils that are attached to the surface of 
the articulators, and they have similar data collection 
procedure [33]. Thus, only the data collection procedure using 
EMA will be described in this paper (in Section 3.3). The 
spatial precision of motion tracking using EMA (AG500) and 
Wave are both approximately 0.5 mm [34, 35]. The sampling 
rate of the original data is 200 Hz for EMA AG500 and 100 
Hz for Wave, respectively. 

3.3. Procedure 
Participants were seated with their head within the calibrated 
magnetic field. Then sensors (pellets) were attached to the 
surface of each articulator using dental glue (PeriAcryl Oral 
Tissue Adhesive). The participants were then asked to produce 
the word sequences at their habitually comfortable speaking 
rate and loudness.  Before the beginning of actually data 
recording, a two-minute training and practice helped the 
participants to adapt to the wired sensors. Previous studies 
have shown these sensors do not significantly affect their 

 
Figure 6.  Example of probabilities (baseline removed) of twenty-five words on a test sequence. The dashed horizontal line is 
the probability threshold for word candidates. 
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speech output [36].  
Figure 7 (picture adapted from [37]) shows the positions of 

12 sensors attached to a participant’s head, face, and tongue 
[38, 39]. Three of the sensors were attached to a pair of 
glasses. HC (Head Center) was on the bridge of the glasses; 
HL (Head Left) and HR (Head Right) were on the left and 
right outside edge of each lens, respectively. The movements 
of HC, HL, and HR sensors were used to calculate the 
movements of other articulators independent of the head. Four 
sensors - T1 (Tongue Tip), T2 (Tongue Blade), T3 (Tongue 
Body Front) and T4 (Tongue Body Back) - were attached 
approximately 10 mm from each other at the midline of the 
tongue [38, 39, 40]. Lip movements were captured by 
attaching two sensors to the vermilion borders of the upper 
(UL) and lower (LL) lips at midline.  

Data from the four tongue sensors and the two lip sensors 
were used for this word recognition experiment. The 
movements of three jaw sensors, JL (Jaw Left), JR (Jaw 
Right), and JC (Jaw Center), were recorded for future use. 

3.4. Data preprocessing 
The time-series data of sensor locations recorded using EMA 
went through a sequence of preprocessing steps prior to 
analysis. First, the head movements and orientations were 
subtracted from the tongue and lip locations to give head-
independent measurements of the analysis variables. The 
orientation of the derived 3-D Cartesian coordinate system is 
displayed in Figure 7. Second, a zero phase lag low pass filter 
(i.e., 20 Hz) [10, 40] was applied for removing noise. Third, 
all sequences were manually segmented based on 
synchronously recorded audio data and annotated with words 
using a Matlab-based software called SMASH [33].  

Only y (vertical) and z (front-back) coordinates (see Figure 
7) of the six tongue and lip sensors (i.e., T1, T2, T3, T4, UL, 
LL) were used for this word recognition experiment because 
the movement along the x axis (left-right) is not significant in 
normal speech production [38, 41]. In the future, however, x 
dimension will be used for predicting speech articulated by 
individuals with laryngectomy or other speech disorders. The 
center of the magnetic field is the origin (zero point) of the 
EMA coordinate system. 

Error samples (e.g., mispronunciation or sensor falling off 
during the production) were rare and were excluded from the 

experiment. In all, 5,900 word samples (in 236 sequences) 
were obtained and used in this experiment.  

4. Results & Discussion 
Cross validation is a standard procedure to evaluate the 
performance of classification algorithms, where training data 
and test data are separate. Leave-one-out cross validation was 
conducted on the dataset from each subject in both training 
and online recognition, where one sequence (with twenty-five 
words) was used for testing and the rest of the sequences were 
used for training. 

4.1. Training accuracy 
The average training (offline classification) accuracy was 
94.01% using minimally processed articulatory data (used in 
[10]) and 96.90% using SAX transformed data in the current 
experiment. A paired t-test showed that the 2.89% 
improvement in accuracy was statistically significant (p < 
0.001). 

The experimental results demonstrated that SAX is 
effective in retaining the articulatory movement patterns while 
reducing the local variation. SAX may have potential for a 
greater improvement in classification accuracy for a larger 
vocabulary. 

4.2. Online recognition accuracy and processing 
time 

The average online recognition accuracy across all subjects 
was 80.00% (SD = 10.95%). More specifically, our algorithm 
failed to recognize 1.96 words (SD = 0.88) and generated 3.04 
(SD = 1.95) false positives in a sequence of twenty-five words. 
The average difference of correctly predicted word locations 
and their actual locations was 48 ms (SD = 9). The online 
word accuracy was improved up to 20%, compared with the 
performance of the original algorithm [10]. 

The average prediction location offset and latency were 
150 ms (SD = 68) and 302 ms (SD = 11) for a word 
prediction, respectively. Latency was measured on a PC with 
2.6 GHz dual-core CPU and 4GB memory.  

Table 1 summarizes the performance findings of the 
original and current algorithm [10]. During offline 
classification, the only difference between the original 

 
Figure 7.  Positions of sensors attached on the 
subject's head, tongue, lips, and jaw in data collection. 

Table 1.  Summary of the performances of current and 
the original algorithm. 

Measure The Original 
Algorithm 

The Current 
Algorithm 

Statistical 
Significance 

Offline 
Classification 

Accuracy 
94.01% 96.90% p < 0.001 

Online Missing 
Words  1.93 1.96  

Online False 
Positives 8.08 3.04 p < 0.001 

Online 
Recognition 

Accuracy 
60.00% 80.00% p < 0.001 
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algorithm and the current algorithm was the use of SAX and 
only a modest improvement in recognition was achieved. For 
online recognition, the current algorithm implemented not 
only SAX, but also a look-back strategy, and speaker-
dependent thresholds. This implementation improved overall 
accuracy by primarily reducing the number of false positives. 
Additional work, however, is needed to determine the 
individual benefit of each newly-added component (i.e., SAX, 
look-back strategy, and speaker-dependent thresholds).  

The high accuracy showed the effectiveness of our 
proposed algorithm to address the challenge in word 
recognition caused by co-articulation. The low prediction 
location offset and latency demonstrated the potential of our 
approach for real-time applications. The low standard 
deviations of the accuracy and other measures across subjects 
indicate that our approach can be applied generally with 
multiple subjects. 

4.3. Across-talker accuracy variation 
Although speech articulation is thought to vary across talkers 
[21], reports on this variability have been limited because most 
silent speech recognition or relevant studies have involved less 
than five participants.  

As reported previously, the standard deviation of the 
online word recognition accuracy across eleven subjects was 
10.95%, which is not surprising. To examine across taker 
differences in our study, the eleven subjects were grouped into 
four groups according to their word recognition accuracy, < 
70%, 70-80%, 80-90%, and ≥ 90%. Figure 8 shows the 
distribution of the subjects with regard to the word recognition 
accuracy. 18.18% of the subjects obtained an accuracy 
equivalent or greater than 90%; 36.36% obtained an accuracy 
greater than 80% but less than 90%; 27.27% obtained an 
accuracy between 70% and 80%; 18.18% obtained an 
accuracy less than 70%. In other words, 81.82% of the 
subjects obtained accuracy greater than 70%. It is notable that 
two of the participants had significantly lower recognition 
accuracies than the other nine participants, while the two 
participants had similarly high offline classification 
accuracies. Future work is required to determine the factors 
that account for across participant differences in recognition 
accuracy.  

4.4. Adaptability for real online recognition 
Our word recognition algorithm was designed for online 
recognition. In this experiment, the algorithm was tested using 
pre-recorded sequences of continuous articulatory movement 
data. That is, the algorithm was not tested in a real online 
recognition experimental setup. However, our experiment, to 
some extent, simulated online recognition. During the 
recognition, at time t, only data before (t + lmax) can be reached 
(lmax = 885 ms), which can be considered as an approximation 
of a real online recognition setting. Therefore, the word 
recognition algorithm used in this study should be well suited 
for real-time applications. Testing the algorithm in a real 
online recognition experimental setting is a next step. 

4.5. Limitations 
Although the results are very promising, there are a number of 
limitations of the current algorithm. First, quite a few 
parameters (e.g., candidate threshold, threshold for look-back, 
step size of the sliding window) need to be determined before 

online prediction, although they can be manually adjusted at 
the beginning (for example, candidate threshold). An 
automatic approach for determining the optimal parameters is 
needed before the silent speech recognition algorithm can be 
used in practice. 

Although the EMA and Wave are able to register 3D 
tongue motion accurately in real-time, and Wave is 
lightweight enough to be installed on a wheelchair, they may 
be still cumbersome in clinical use. An ideal or practical silent 
speech interface could be a handheld or a wearable device. 
Fortunately, the electromagnetic motion tracking technology is 
advancing rapidly. For example, devices that are wearable, and 
even with wireless sensors are being investigated (e.g., [11, 
42, 43]). Our algorithm that uses the sensor coordinates will be 
seamlessly embedded with those portable systems when they 
are ready for clinical use. 

5. Conclusions & Future Work 
Experimental results showed the potential of our word 
recognition algorithm for building an articulation-based silent 
speech interface, which can be used in command-and-control 
systems using silent speech and may even enable voiceless 
patients to produce synthetic speech using their tongue and 
lips.  

Although the current results are encouraging, future work 
is required to determine the optimal parameters (e.g., 
candidate thresholds) automatically for online recognition. In 
addition, the efficacy of alternative classifiers should be 
explored such as Hidden Markov Models [44, 45, 46], Fast 
DTW [47], Dynamic Bayesian Network [48], Random Forest 
[14]; the current design is easily adapted to classifiers that 
generate estimated probabilities associated with candidates.  
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