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Abstract
To date, the non-manual components of signed utterances have
rarely been considered in automatic sign language translation.
However, these components are capable of carrying important
linguistic information. This paper presents work that bridges
the gap between the output of a sign language translation system
and the input of a sign language animation system by incorpo-
rating non-manual information into the final output of the trans-
lation system. More precisely, the generation of non-manual
information is scheduled after the machine translation step and
treated as a sequence classification task. While sequence classi-
fication has been used to solve automatic spoken language pro-
cessing tasks, we believe this to be the first work to apply it
to the generation of non-manual information in sign languages.
All of our experimental approaches outperformed lower base-
line approaches, consisting of unigram or bigram models of
non-manual features.

1. Introduction
Sign languages are often the preferred means of communication
of deaf and hard-of-hearing persons, making it vital to provide
access to information in these languages. Technologies for au-
tomatically translating written text (in a spoken language1) into
a sign language would therefore increase the accessibility of in-
formation sources for many people.

Sign languages are natural languages and, as such, fully de-
veloped linguistic systems. While there are a variety of sign lan-
guages used internationally, they share several key properties:
Utterances in sign languages are produced with the hands/arms
(the manual activity) and the shoulders, head, and face (the non-
manual activity). Manual and non-manual components together
form the sublexical components.

1.1. Sign language production pipeline

While the input to a translation system such as the one outlined
above would be a written text, the output is less obvious: Ul-
timately, the goal would be to produce an animation of a vir-
tual human character performing sign language, i.e., a sign lan-
guage avatar. Most sign language machine translation systems

1The term spoken language refers to a language that is not signed,
whether it is represented in its spoken or written form.

produce some form of symbolic output. In the ideal case, this
output should be suitable to serve as the input for an animation-
synthesis system.

Unfortunately, to date, this sign language production
pipeline is often left incomplete, in that the output of many ma-
chine translation systems consists of strings of sign language
glosses,2 i.e., information about the manual activity of a signed
utterance, only.

This paper presents work that bridges the gap between the
output of a sign language translation system and the input of
a sign language animation system by incorporating non-manual
information into the final output of the translation system. More
precisely, the generation of non-manual information is sched-
uled after the machine translation step and treated as a sequence
classification task. To our knowledge, this is the first work to
apply sequence classification to the generation of non-manual
information in sign languages. We show that all of our experi-
mental approaches outperformed lower baseline approaches, in-
cluding unigram and bigram models of non-manual component
sequences.

1.2. Linguistic background and prior work

Experimental research with sign language users has shown that
the absence of non-manual information in synthesized signing
(sign language animation) leads to lower comprehension scores
and lower subjective ratings of the animations [1]. This is be-
cause non-manual components in sign languages are capable
of assuming functions at all linguistic levels [2]. As an exam-
ple, in Swiss German Sign Language (Deutschschweizerische
Gebärdensprache, DSGS), raised eyebrows are used to express
supposition, contrast, or emphasis [3]. A combination of a head
movement forward and raised eyebrows is used to mark topical-
ized constituents. Conditional if /when utterances have the head
tilt and move forward slightly and the eyebrows go up at the
start of the condition part. For rhetorical questions in DSGS,
the head tilts and moves forward slightly and the eyebrows are
furrowed on the question sign [4].

Non-manual components have been omitted, for example,
in a statistical machine translation system that translates be-
tween German and German Sign Language [5] and one that

2Glosses are semantic representations of signs that typically take on
the base form of a word in the surrounding spoken language.



translates between English, German, Irish Sign Language, and
German Sign Language [6]. Massó and Badia [7] took into ac-
count mouth morphemes in a statistical machine translation sys-
tem translating from Catalan into Catalan Sign Language; such
mouth movements convey adverbial or aspectual modifications
to the meaning of manual signs in that language.

In contrast, in this paper, we deal with multiple types of
non-manual components, taking into account the multilinear na-
ture of sign languages. Our work is inspired by linguistic mod-
els that represent both the manual and non-manual components
of signed utterances [8, 9].

The remainder of the paper is structured as follows: Sec-
tion 2 introduces the project as part of which the machine trans-
lation system is being developed. In particular, the data that
served as a basis for the sequence classification experiments is
described. In Section 3, we specify our sequence classification
approaches, provide further information on the data used for the
experiments, explain the experiment configurations, and present
as well as discuss the results.

2. Non-manual components in a corpus of
DSGS train announcements

We are developing a system that automatically translates writ-
ten German train announcements of the Swiss Federal Railways
into DSGS. Our team includes Deaf3 and hearing researchers.
Example 1 below shows an announcement of the Swiss Federal
Railways.

(1) Ausfallmeldung zur S1 nach Luzern: Die S1 nach
Luzern, Abfahrt um 6 Uhr 10, fällt aus. (‘Notice of
cancellation regarding the S1 to Lucerne: The S1 to
Lucerne, scheduled to leave at 6:10am, has been
cancelled.’)

The resulting DSGS announcements are presented by means of
an avatar. A state-of-the art avatar system, JASigning [11], is
used for this. The JASigning character Anna is shown in Figure
1.

The train announcements of the Swiss Federal Railways
are parametrized in that they are based on templates with slots,
where slots are, e.g., the names of train stations, types of trains,
or reasons for delays. When automatically translating these an-
nouncements, one possibility is to take account precisely of
their parametrized nature. However, our goal is to build a
translation system that can later be extended to other domains
with more lexical and syntactic variation. Hence, a more trans-
ferrable translation approach is applied, namely statistical ma-
chine translation.

Statistical machine translation systems require parallel cor-
pora as their training, development, and test data. To build a
parallel corpus, the Deaf and hearing members of our team man-
ually translated 3000 written German train announcements into
DSGS. The DSGS side of the resulting parallel corpus consists
of information arranged on three tiers:

1. sign language glosses

2. head, with 13 possible values

3. eyebrows, with 3 possible values

3It is a widely recognized convention to use the upper-cased word
Deaf for describing members of the linguistic community of sign lan-
guage users and, in contrast, to use the lower-cased word deaf when
describing the audiological state of a hearing loss [10].

The non-manual components in the DSGS side of our par-
allel corpus serve various linguistic functions. For example,
in our domain of train announcements, we have observed that
furrowed eyebrows often occurred during signs with negative
polarity, such as the sign BESCHRÄNKEN (‘LIMIT’). Raised
eyebrows often occurred during signs that express a warning
or emphasis, e.g., the signs VORSICHT (‘CAUTION’) or SO-
FORT (‘IMMEDIATELY’). The syntactic functions mentioned
in Section 1.2, topicalization and rhetorical question, also occur
frequently in the corpus; a few instances of conditional expres-
sions are also present. Many of these syntactic non-manuals
relate to specific words in the sentence (e.g., rhetorical question
non-manual components co-occur with question words, such as
“WHAT”). Within this paper, we focus on such lexically-cued
non-manuals. (As discussed in Section 4, we are aware that
not all non-manual components are predictable based on the se-
quence of lexical items in the sentence alone, and we propose
to investigate such non-manuals in future work.)

Table 1 shows the DSGS translation of the first part of
the train announcement introduced in Example 1, Ausfallmel-
dung zur S1 nach Luzern (‘Notice of cancellation regarding the
S1 to Lucerne’). Note that the starting and ending times of
the non-manual components align with the boundaries of man-
ual activities (as represented through glosses). This has been
shown to be the case for non-manual components with linguis-
tic functions; non-manual components that serve purely affec-
tive purposes, e.g., expressing anger or disgust, are known to
start slightly earlier than the surrounding manual components
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

3. Generating non-manual information
through sequence classification

The goal of our work was to include non-manual information
in the process of translating written German train announce-
ments into DSGS. Traditionally, glosses have been the sole rep-
resentation of sign language in an automatic translation task
(cf. Section 1). One way of considering non-manual compo-
nents in this task is to simply append them to the glosses. This
representation is shown in Example 2 for the announcement in-
troduced in Example 1. The non-manual features are printed in
bold.

(2) Ausfallmeldung zur S1 nach Luzern:
MELDUNG__Head_forward__Eyebrows_raised
IX__Head_back__Eyebrows_raised
BAHN__Head_up__Eyebrows_raised
S1__Head_down__Eyebrows_raised
NACH__Head_up__Eyebrows_neutral
LUZERN__Head_up__Eyebrows_raised
AUSFALL__Head_down__Eyebrows_raised

However, such a representation aggravates the issue of data
sparseness, since the size of the vocabulary is not only equiva-
lent to the number of unique glosses but to the number of unique
combinations of glosses and non-manual features. This in-
creases the likelihood that tokens appear in the decoding phase
that have not been seen during training (out-of-vocabulary
items, OOV). Such a representation also does not accommodate
the multimodal nature of sign languages: Three tiers (glosses,
head, and eyebrow information) are collapsed into one.

We propose an approach that schedules the automatic gen-
eration of non-manual information after the machine translation
step and views it as a sequence classification task. This is justi-
fied by the fact that the non-manual components in our corpus



Glosses MELDUNG IX BAHN S1 NACH LUZERN AUSFALL
(‘NOTICE’) (‘IX’) (‘TRAIN’) (‘S1’) (‘TO’) (‘LUCERNE’) (‘CANCELLATION’)

Eyebrows raised neutral raised

Head forward back up down up down

Table 1: DSGS translation of Ausfallmeldung zur S1 nach Luzern (‘Notice of cancellation regarding the S1 to Lucerne’)

serve linguistic functions, which means their boundaries align
with those of manual components (cf. Section 2). Hence, the
process of generating non-manual components can be regarded
as a task of labeling glosses (as representations of the manual
components) with non-manual features.

Figure 1 visualizes the overall pipeline that transforms a
written German train announcement into a DSGS animation:
The machine translation system receives as input a German an-
nouncement like the one introduced in Example 1. With the
help of models learned from our parallel corpus, the system
translates the German announcement into DSGS glosses. The
glosses in turn serve as input for the sequence classification sys-
tem. The output of the machine translation and the sequence
classification system is then combined and converted into mo-
tion data for the avatar. The process of generating the motion
data is not illustrated further in the figure, as it is outside of the
scope of this paper.

3.1. Conditional Random Fields

Sequence classification has been used to solve various natu-
ral language processing problems, such as part-of-speech tag-
ging and chunking (shallow parsing). In contrast to standard
classifiers, sequence classifiers are capable of taking into ac-
count the sequential nature of data. Sequential Conditional Ran-
dom Fields (CRFs) [22] are a state-of-the-art approach for this.
Given one or more sequences of tokens (the evidence), CRFs
compute the probability of a sequence of labels (the outcome).
While multiple evidence layers are permitted, CRFs only allow
the prediction of one outcome layer.

The Wapiti toolkit [23] provides an efficient implementa-
tion of CRFs.4 Sequence classification with Wapiti follows
a train–test–evaluate cycle. Handcrafted feature templates are
created to specify which tokens of the evidence are considered
for the prediction of the outcome labels. In addition, the emis-
sion order is declared, indicating whether the evidence is condi-
tioned on label unigrams (emission order 1) or bigrams (emis-
sion order 2). During the training step, the feature templates are
instantiated with the training data. Wapiti offers a model dump
function, which allows the user to investigate the quality of the
resulting features.

3.2. Data

To perform the sequence classification experiments in Wapiti,
the parallel corpus of 3000 German/DSGS train announcements
described in Section 2 was randomly divided into ten folds of
300 sentences each to enable ten-fold cross validation. For each
validation round, eight folds were used for training, one was
used for development, and one for testing. Using the ground
truth as opposed to the machine translation output (cf. Section
2) as data was motivated by our interest in investigating the po-
tential of sequence classification in isolation, without possible
error propagation from the preceding machine translation step.

4http://wapiti.limsi.fr/manual.html

3.3. Experiment configurations

The goal of the experiments described here was to predict the
most probable sequence of non-manual features for a sequence
of glosses output by the machine translation system (cf. Figure
1). As stated in Section 3.1, CRFs allow the prediction of one
outcome layer at a time. Hence, the two label layers head and
eyebrows in our corpus (cf. Section 2) could either be collapsed
into a single label (Configuration G→H+E, Table 2), or a sep-
arate classifier could be trained for each feature (Configura-
tions G→H and G→E, Table 3). A downside of Configuration
G→H+E is that there is a potential for data sparseness, as the
number of possible outcome labels is equivalent to the number
of cross-combinations of head and eyebrow labels occurring in
the training data. However, even with this approach, the risk of
data sparseness is lower than that of appending the non-manual
features to the sign language glosses during the machine trans-
lation task, as described at the beginning of Section 3.

Evidence Label
Gloss Non-manual

MELDUNG (‘NOTICE’) forward_raised
IX (‘IX’) back_raised
BAHN (‘TRAIN’) up_raised
S1 (‘S1’) down_raised
NACH (‘TO’) up_neutral
LUZERN (‘LUCERNE’) up_raised
AUSFALL (‘CANCELLATION’) down_raised

Table 2: Configuration G→H+E

Evidence Label
Gloss Head

MELDUNG (‘NOTICE’) forward
IX (‘IX’) back
BAHN (‘TRAIN’) up
S1 (‘S1’) down
NACH (‘TO’) up
LUZERN (‘LUCERNE’) up
AUSFALL (‘CANCELLATION’) down

Evidence Label
Gloss Eyebrow

MELDUNG (‘NOTICE’) raised
IX (‘IX’) raised
BAHN (‘TRAIN’) raised
S1 (‘S1’) raised
NACH (‘TO’) neutral
LUZERN (‘LUCERNE’) raised
AUSFALL (‘CANCELLATION’) raised

Table 3: Configurations G→H (top) and G→E (bottom)

http://wapiti.limsi.fr/manual.html


Figure 1: Sign language production pipeline: machine translation, sequence classification, and animation

With Configurations G→H and G→E, each label layer
(head and eyebrows, respectively) is treated in isolation, which
means that dependencies between the two are not captured.
However, conceptually, dependencies between these two types
of non-manual features exist in that they assume specific lin-
guistic functions together, e.g., topicalization, rhetorical ques-
tions, or conditional expressions in DSGS. These dependencies
can be accounted for by introducing a cascaded approach, i.e.,
by using the output of one classifier as additional input for the
other. More precisely, the output of the head information classi-
fier can be used as additional evidence for the eyebrow informa-
tion classifier and vice versa. This is shown as Configurations
G_E→H and G_H→E in Table 4. Note that such a representa-
tion accommodates the multi-tier nature of sign languages.

To better model the sequential dependencies in a given data
set, an IOB representation [24] could be used. In this format, B
denotes the first token of a label sequence, I a sequence-internal
token, and O is used for tokens that are not part of a sequence of
a label under consideration. This format is applied as Configu-
rations G→HIOB and G→EIOB (Table 5). Note that in the case
at hand, O does not occur, since the data contains multi-class as
opposed to binary annotations and neutral is one of the possible
class labels.

For our experiments, we applied all of the above seven con-
figurations, as summarized in Table 6.

Among the strengths of CRFs is their ability to handle a
large amount of features as well as to cope with redundancy
[23]. We provided 26 feature templates for each evidence layer,
guided by a template provided by Roth and Clematide [25]. Ta-
ble 7 lists the 12 context windows used. The table shows that
the overall context considered ranged from the three previous
tokens to the three following tokens relative to the current po-
sition. Each window was included with both emission order 1
(unigram) and 2 (bigram). In addition, raw unigram output dis-
tribution and bigram output distribution were included.

Evidence Label
Gloss Eyebrows Head

MELDUNG (‘NOTICE’) raised forward
IX (‘IX’) raised back
BAHN (‘TRAIN’) raised up
S1 (‘S1’) raised down
NACH (‘TO’) neutral up
LUZERN (‘LUCERNE’) raised up
AUSFALL (‘CANCELLATION’) raised down

Evidence Label
Gloss Head Eyebrows

MELDUNG (‘NOTICE’) forward raised
IX (‘IX’) back raised
BAHN (‘TRAIN’) up raised
S1 (‘S1’) down raised
NACH (‘TO’) up neutral
LUZERN (‘LUCERNE’) up raised
AUSFALL (‘CANCELLATION’) down raised

Table 4: Configurations G_E→H (top) and G_H→E (bottom)

3.4. Results

Table 8 shows the results of our experiments obtained using the
default settings of Wapiti. “Experimental approach” refers to
the configurations described in Section 3.3. The lower baseline
for each configuration consisted of using the unigram (“Lower
baseline, unigram”) and bigram (“Lower baseline, bigram”)
output distribution of the labels, respectively, i.e., of globally
assigning the most frequent label unigram and bigram of the
training data, respectively. For each experimental or baseline



Evidence Label
Gloss Head

MELDUNG (‘NOTICE’) B_forward
IX (‘IX’) B_back
BAHN (‘TRAIN’) B_up
S1 (‘S1’) B_down
NACH (‘TO’) B_up
LUZERN (‘LUCERNE’) I_up
AUSFALL (‘CANCELLATION’) B_down

Evidence Label
Gloss Eyebrow

MELDUNG (‘NOTICE’) B_raised
IX (‘IX’) I_raised
BAHN (‘TRAIN’) I_raised
S1 (‘S1’) I_raised
NACH (‘TO’) B_neutral
LUZERN (‘LUCERNE’) B_raised
AUSFALL (‘CANCELLATION’) I_raised

Table 5: Configurations G→HIOB (top) and G→EIOB (bottom)

Configuration Evidence Label

G→H+E glosses head and eyebrows

G→H glosses head

G→E glosses eyebrows

G_E→H – glosses head– eyebrows

G_H→E – glosses eyebrows– head

G→HIOB glosses head IOB

G→EIOB glosses eyebrows IOB

Table 6: Overview of configurations

approach, Table 8 provides the following numerical informa-
tion, in analogy to previous work in classification for natural
language processing [26, 25, 27]:

• Number of labels

• Token error: This is the mean of the token errors of the
ten rounds of a 10-fold cross validation. The token er-
ror for an individual validation round is calculated as the
percentage of incorrectly predicted labels.

• Standard deviation of token error for the ten rounds

• Confidence interval of token error: This is the confidence
interval at a confidence level of 95% calculated over the
mean of the token errors using Student’s t-test.

• Sequence error: This is the mean of the sequence errors
of a 10-fold cross validation. The sequence error for an
individual validation round is calculated as the percent-
age of incorrectly predicted sequences, i.e., sequences
containing at least one token error.

• Standard deviation of sequence error

• Confidence interval of sequence error: This is the con-
fidence interval at a confidence level of 95% calculated

Relative position Description

0 current token
-1 to +1 previous, current, following token
-1 to 0 previous and current token
0 to +1 current and following token
-1 previous token
1 following token
-2 to 0 two previous and current token
-2 to +1 two previous, current, following token
-3 to 0 three previous and current token
-2 to +2 two previous, current, following token
-1 to +2 previous, current, two following tokens
-1 to +3 previous, current, three following tokens

Table 7: Context windows used for the feature templates

over the mean of the sequence errors using Student’s t-
test.

The results in Table 8 show that all experimental ap-
proaches outperformed their lower baselines (unigram and bi-
gram output distribution); in all cases, the magnitude of the dif-
ference was greater than the confidence interval of the values.
The error rates of the experimental approaches are notably low,
which is at least partly due to the nature of the data used for
the experiments: As described in Section 2, the train announce-
ments are highly parametrized in that they are based on a lim-
ited set of phrasal templates. As shown in the table, there is a
tendency for the bigram baseline to perform better than the uni-
gram baseline, a result that underlines the inherently sequential
nature of the data.

3.4.1. Cascaded vs. non-cascaded

Between Configuration G→H (non-cascaded) and G_E→H
(cascaded), both predicting head information, Configuration
G→H exhibits a lower sequence error rate. Between Configu-
ration G→E (non-cascaded) and G_H→E (cascaded), both pre-
dicting eyebrow information, Configuration G_H→E achieved
a lower sequence error rate.

To examine the theoretical potential of the cascaded ap-
proach, we determined the upper bound, i.e., the result of ap-
plying the model learned from the training data on the ground-
truth data. In other words, as data for the additional evi-
dence layer (eyebrow information for Configuration G_E→H
and head information for Configuration G_H→E), we used the
gold-standard annotations of these layers instead of the output
of Configurations G→H and G→E, respectively. The resulting
numbers are shown in the table as “Upper bound” for Configu-
rations G_E→H and G_H→E: Configuration G_E→H/Upper
bound achieved a lower sequence error rate than Configura-
tion G→H. Configuration G_H→E/Upper bound also achieved
a lower sequence error rate than Configuration G→E; here, the
magnitude of the difference is greater than the confidence inter-
vals of the values. These results show that a cascaded approach
is capable of outperforming a non-cascaded approach, and they
imply that in DSGS, head information provides more useful in-
formation for predicting eyebrow information than vice versa.



Configuration Labels Token level Sequence level
Token Standard Confidence Sequence Standard Confidence
error (%) deviation interval error (%) deviation interval

Predicting H+E 31
Lower baseline, bigram 65.04 0.89 0.63 99.97 0.10 0.07
Lower baseline, unigram 68.16 0.51 0.36 100.00 0.00 n.a.
G→H+E 1.88 0.50 0.36 10.43 2.53 1.81

Predicting H 13
Lower baseline, bigram 63.65 1.05 0.75 99.97 0.10 0.07
Lower baseline, unigram 68.07 0.50 0.36 100.00 0.00 n.a.
G→H 1.62 0.45 0.32 8.96 2.43 1.7
G_E→H 1.62 0.50 0.36 9.19 2.40 1.72

— Upper bound 1.29 0.39 0.28 7.86 2.05 1.46

Predicting E 3
Lower baseline, bigram 20.57 1.07 0.77 94.62 1.80 1.29
Lower baseline, unigram 20.57 1.07 0.77 94.62 1.80 1.29
G→E 0.74 0.24 0.17 6.85 1.81 1.29
G_H→E 0.66 0.16 0.12 5.72 0.96 0.69

— Upper bound 0.45 0.11 0.08 4.21 0.88 0.63

Predicting HIOB 21
Lower baseline, bigram 74.75 3.98 2.85 99.97 0.10 0.07
Lower baseline, unigram 76.41 0.52 0.37 100.00 0.00 n.a.
G→HIOB 1.81 0.56 0.40 9.13 2.84 2.03

Predicting EIOB 6
Lower baseline, bigram 37.07 1.55 1.11 95.79 1.58 1.13
Lower baseline, unigram 43.12 1.48 1.06 98.83 0.48 0.34
G→EIOB 1.41 0.30 0.21 9.96 1.85 1.33

Table 8: Sequence classification experiments: Results

3.4.2. IOB vs. non-IOB

Between Configuration G→H (non-IOB format) and G→HIOB

(IOB format), both predicting head information, Configura-
tion G→H produced a lower sequence error rate. Between
Configuration G→E (non-IOB format) and G→EIOB (IOB
format), both predicting eyebrow information, Configuration
G→E yielded a lower sequence error rate. In this case, the mag-
nitude of the difference was greater than the confidence interval
of the values. These results show that applying an IOB format
was not beneficial for the task at hand, most likely due to data
sparseness: Introducing the IOB format doubled the number
of labels for Configuration G→EIOB compared to Configuration
G→E (6 vs. 3 labels), while the relative increase was lower
for Configuration G→HIOB compared to Configuration G→H
(21 vs. 13 labels), indicating that five head information features
appeared sequence-initially only, i.e., spanned over one gloss.

3.4.3. Analysis of features

We examined the 50 highest-weighted (instantiated) features in
the models of the experimental approaches of Configurations
G→H+E, G_E→H, and G_H→E for the first round of the 10-
fold cross validation: Among the highest-weighted features for
Configuration G→H+E were 31 bigram features and 19 uni-
gram features. The most frequently occurring feature context
window (cf. Table 7) consisted of the current token of the (gloss)
evidence layer (i.e., relative position 0). Thus, the identity of a
lexical item contributed to the model’s prediction of the non-
manual feature that co-occurs with it. The second- and third-
best performing feature context windows contained the previous
token (-1) and the following token (+1) of an evidence layer, re-

spectively, and this was followed by a window containing the
current and the following token (0 to +1). Thus, the neighbor-
ing lexical items contributed to the prediction of the non-manual
feature.

For Configuration G_E→H (predicting head information),
the 50 top-weighted features consisted of 26 bigram and 24 un-
igram features. 48 features used tokens from the gloss evidence
layer, while 2 used tokens from the added eyebrow information
layer. For Configuration G_H→E (predicting eyebrow infor-
mation), this number was considerably higher: Among the 50
best-scoring features were 27 that used tokens from the head
information layer. Again, this serves as evidence that head in-
formation is valuable when predicting eyebrow information in
DSGS.

4. Conclusion and outlook
We have presented work that bridges the gap between the output
of a sign language machine translation system and the input of
a sign language animation system by incorporating non-manual
information into the final output of the translation system. This
is in contrast to many prior statistical sign language machine
translation approaches that did not include non-manual com-
ponents in their output. The inclusion of such non-manual in-
formation enables the final animation-synthesis component of
a translation system to control the head and face of a signing
avatar.

Our approach has scheduled the generation of non-manual
information after the machine translation task and treated it as
a sequence classification task. This is justified by the fact that
the boundaries of linguistic non-manual components align with



those of manual components, rendering the process of generat-
ing non-manual components a gloss-labeling task.

Sequence classification is a technique commonly used in
the automatic processing of spoken languages. The work we
have reported on in this paper is presumably the first to apply it
to the generation of non-manual information in sign languages.

We have shown that all of our experimental approaches out-
performed their lower baselines. The experimental approaches
consisted of: predicting head and eyebrow information together
in one label, predicting head and eyebrow information sepa-
rately, predicting head information by using eyebrow informa-
tion as additional evidence and vice versa (cascaded approach),
and applying an IOB format. We have demonstrated the poten-
tial of applying a cascaded approach, and we did not observe
any benefit from utilizing an IOB format in our task.

As a next step, we intend to apply our experimental ap-
proaches to a parallel English/American Sign Language (ASL)
corpus from a domain with greater semantic and syntactic va-
riety [28]. In this way, we hope to determine, for a different
sign language and for a more diverse corpus, if the key findings
of this paper are replicable, namely: (a) that the non-manual
components of a sign language sentence may be successfully
predicted using a sequence classification approach and (b) that
some orderings of cascading the sequential predictions are more
successful than others (e.g., for DSGS, we found that head in-
formation was useful to consider when predicting eyebrow in-
formation).

In contrast to the train announcement DSGS corpus used in
this paper, the ASL corpus is known to contain instances of non-
manual information that are not lexically-cued, i.e., they are not
recoverable from the glosses alone. For example, a yes/no ques-
tion in ASL can have the same surface form (gloss order) as a
declarative sentence.5 Thus, we anticipate investigating how
to best exploit information contained in the (English) source
sentence, e.g., to include question marks as absolute features.
Leveraging information from the source sentence will also al-
low us to capture instances in which a syntactic function is ex-
pressed non-manually only on the ASL side: e.g., in ASL, it is
possible to convey negation solely via headshake, without the
use of any manual sign to indicate the negation [29].
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