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Abstract
Dysarthria is a speech disorder caused by difficulties in control-
ling muscles, such as the tongue and lips, that are needed to
produce speech. These differences in motor skills cause speech
to be slurred, mumbled, and spoken relatively slowly, and can
also increase the likelihood of dysfluency. This includes non-
speech sounds, and ‘stuttering’, defined here as a disruption in
the fluency of speech manifested by prolongations, stop-gaps,
and repetitions. This paper investigates different types of input
features used by deep neural networks (DNNs) to automatically
detect repetition stuttering and non-speech dysfluencies within
dysarthric speech. The experiments test the effects of dimen-
sionality within Mel-frequency cepstral coefficients (MFCCs)
and linear predictive cepstral coefficients (LPCCs), and explore
the detection capabilities in dyarthric versus non-dysarthric
speech. The results obtained using MFCC and LPCC fea-
tures produced similar recognition accuracies; repetition stut-
tering in dysarthric speech was identified correctly at approx-
imately 86% and 84% for non-dysarthric speech. Non-speech
sounds were recognized with approximately 75% accuracy in
dysarthric speakers.
Index Terms: Dysarthria, stuttering, non-speech dysfluency,
DNN, MFCC, LPCC

1. Introduction
Many studies have researched ways to improve the intelligibil-
ity of dysarthric speech, including methods that targeted partic-
ular aspects of speech to modify. Kain et al. [1] implemented
a system of transformations that focused strictly on mapping
vowels from individuals with dysarthria to vowels more charac-
teristic of non-dysarthric speech. Those experiments showed an
intelligibility increase of 6%. In 2013, Rudzicz [2] proposed a
method that added the correction of other pronunciation errors
and adjusted tempo. Among a cohort of listeners unfamiliar
with the speech of people with cerebral palsy, word recognition
rates increased by 19.6%. Crucially, the Levenshtein-based de-
tection of phoneme repetitions and non-speech dysfluencies in
that work depended on full phoneme segmentation, which may
itself be quite challenging for dysarthric speech.

Chee et al. [3] provided an overview of automatic stut-
tering detection, emphasizing its difficulty across a number of
classification methods. Czyzewski et al. [4], e.g., implemented
artificial neural networks (ANNs) and ‘rough sets’ to detect
three types of ‘stuttering’: stop-gaps, vowel prolongations, and
syllable repetitions, obtaining accuracies up to 73.25% with
ANNs and 91% with rough sets. Wiśniewski et al. [5, 6] per-
formed two studies that used hidden Markov models with Mel-
frequency cepstral coefficients (MFCCs) to detect stuttering.

The first focused on both prolongation of fricative phonemes
and blockades with repetition of stop phonemes that produced
an accuracy of 70% [5]; the second strictly focused on prolon-
gation of fricative phonemes and found an improvement in ac-
curacy to approximately 80% [6].

Rath investigated modifications to MFCC feature vectors
in speaker adaptation using deep neural networks (DNNs) [7],
obtaining 3% improvements over Gaussian mixture models
(GMMs) baselines. Across various types of speech features,
deep learning has shown considerable improvements across
several areas of speech recognition [8], compared with tradi-
tional techniques such as hidden Markov models. Here, we
compare MFCCs (which are the most commonly used feature
set in this domain [3]) and linear predictive cepstral coefficients
(LPCCs), which are another popular but less utilized feature
set. An exception was Chee et al. [9], who applied LPCCs
with k-nearest-neighbors and linear discriminant analysis clas-
sifiers to automatically detect prolongations and repetition stut-
ters, with recognition accuracy up to 89.77%. In the related field
of automatic speech recognition ()ASR), MFCCs have consis-
tently generated better results than LPCCs [10, 11]; to see if this
trend extends to the domain of dysfluency detection, we com-
pare these feature types with DNNs.

2. Methodology

Figure 1: Overview of automatic stuttering detection method.

2.1. Data

The TORGO database [12] was created by a collaboration
between the departments of Computer Science and Speech-



Language Pathology at the University of Toronto, and the
Holland-Bloorview Kids Rehab hospital. The corpus consists
of recordings from seven participants, three females and four
males ranging in age from 16 to 50, diagnosed with cerebral
palsy or amyotrophic lateral sclerosis. Additionally, there are
recordings from seven control speakers matched for age and
gender. A combination of non-words, short words, restricted
sentences, and unrestricted sentences were recorded by all par-
ticipants with a 16 kHz sampling frequency using two micro-
phones. The database also includes articulatory measurements
using electromagnetic articulography, which is not used here.

2.2. Segmentation

Segmentation was performed manually by listening to the
recorded speech samples in the TORGO database and marking
the start and end times of each occurrence of stutters. Only a
single type of ‘stuttering’ dysfluency is considered here, specif-
ically repetition-type stutters (Table 1), since these are more dif-
ficult to detect than prolongations and stop-gaps [4].

Table 1: Repetition Types

Repetition Type Example
Part of a word wh-wh-what time is it?
Whole word what-what-what time is it?
Phrase what time what time is it?

For the analysis of non-speech dysfluencies we employed
the phonetic transcriptions provided with the TORGO database.
In such transcriptions, non-phonetic segments are marked with
the label noi (noise).

2.3. Feature extraction

After segmentation, speech data were parameterized into an in-
put form suitable for use by a DNN classifier (Figure 2), as
described below.

Figure 2: MFCC and LPCC feature extraction overview.

2.3.1. MFCC features

The MFCC input feature baseline consists of 13 cepstral coeffi-
cients in addition to the 0th cepstral coefficient, energy, δ, and
δδ coefficients. There is no pre-emphasis performed on these
features. Since speech samples are constantly changing, we use
frame blocking to analyze the signal in small time frames such
that it becomes near stationary. The speech signals are cut into

25 ms frames with a frame step of 10 ms. We use a Hamming
window to calculate the MFCC features, where the coefficients
are found given Equation 1 (N is equal to window size minus
one, in this case N = 399).

w(n) = 0.54− 46cos(2π
n

N
), 0 ≤ n ≤ N (1)

To detect the different frequencies in the signal, the power spec-
trum is calculated using the discrete Fourier transform (DFT).
The Mel filterbank then sums the energy in each filter, obtaining
29 uniformly-distributed triangular filters. The discrete cosine
transform (DCT) is then applied to the log-filterbank energies
to obtain the MFCCs. The purpose of the DCT is to decorrelate
the overlapping filterbanks.

2.4. LPCC features

The LPCC features include 13 coefficients followed by the en-
ergy coefficient. LPCCs are more vulnerable to noise than
MFCCs, so the speech signal is flattened before processing
to avoid additive noise error. This is accomplished by pre-
emphasis, a first order high-pass filter is applied to the speech
signal as in

H(z) = 1− az−1, a = e
−
100π

16000 = 0.9806. (2)

Frame blocking and the Hamming window are applied to the
LPCC feature space with the same parameters as for MFCCs
(i.e., frame blocking 25 ms, 50% frame overlap and frame step
10 ms). This is followed by LPC analysis that estimates the
coefficients by using the autocorrelation method to obtain fun-
damental frequency, pitch, and repeating patterns in the speech
signal, before cepstral analysis is performed.

2.5. Feature modulation

We explored increasing the dimension of the input features used
by the DNN due to the fact that DNNs are robust to larger input
dimensions. The frequently-used hidden Markov model with
Gaussian mixture output densities can become subject to error
in parameter estimation, even with a slight increase in the input
dimensions. The concept of a moving window is implemented
to create inputs with larger dimensions. The moving window
considers frames before and after the current frame. For exam-
ple, a window of size ±x takes the x consecutive frames pre-
ceding and following the current frame and combines them into
a single input vector (Figure 3 provides a visual representation
of a moving window of size ±1).

Figure 3: Moving window of size ±1.

The dimensions of the input features are provided in Table
2. The baseline number of MFCCs and LPCCs are 45 and 14,
respectively. The purpose of the moving window is to exploit
the DNN’s ability to use higher-dimensional input feature vec-
tors to achieve better classification results by integrating con-
textual information.



Table 2: Input feature dimensions

Moving window size 0 ±1 ±3 ±5
MFCC input dimension 45 135 315 495
LPCC input dimension 14 42 98 154

2.6. Classification

We use the deep neural network implementation of Tanaka
and Okutomi [13] for stuttering classification. Four pre-trained
Bernoulli-Bernoulli restricted Boltzman machines (RBMs) plus
a decision layer are stacked to form a deep belief network
(DBN), to create a DBN-DNN classifier (Figure 4). The RBMs
are pre-trained in an unsupervised way using contrastive diver-
gence. Once the DBN is initialized with the pre-trained RBMs,
we fine-tune the DBN with a supervised learning method based
on reducing error in the classification of, alternatively, stuttering
or various types of non-speech dysfluencies.

Figure 4: DBN-DNN overview, after [13]

3. Experiment 1: stuttering detection
We use two different partitioning schemes to compare results
according to different categories of interest (Figure 5), namely
generic-vs-individual speaker models (i.e., speaker-independent
vs. speaker-dependent), and dysarthric-vs-non-dysarthric indi-
viduals. A total of 120 repetition stutters occurred across all
3115 recordings of dysarthric speech, and a total of 42 repetition
stutters occurred across all 5641 recordings of non-dysarthric
speech. The male and female dysarthric speakers with the most
stutter occurrences were used for individual analysis; specif-
ically, male dysarthric speaker M04 with 32 stutters, and fe-
male dysarthric speaker F03 with 22 stutters. Among the non-
dysarthric speakers, there is no significant difference between
males and females, so the non-dysarthric speaker with the most
stutter occurrences was used in further analysis, namely male
control MC04 with 16 stutters.

All training and testing data sets were divided in the same
way – 70% of stutter occurrences were randomly assigned to
training and paired with a random utterance without any stut-
ter. By balancing training class sizes, we avoid the problem
of overfitting to devolved majority classification. Testing data
consisted of the remaining 30% of repetition stutters.

An empirical question is whether stutter detection is

Figure 5: Training & testing data set divisions used in experi-
mentation.

more or less difficult in dysarthric speech, compared to non-
dysarthric speech. Table 3 shows the average error rates of de-
tecting repetition stuttering using 5-fold cross validation with
MFCC and LPCC features. Clearly, across all models, accu-
racy increases monotonically as additional context is added. We
also note that we obtain state-of-the-art accuracy for dysarthric
speaker F03 using 10 frames of surrounding context, which is
comparable to Czyzewski et al.’s work with rough sets [4]. An
n-way analysis of variance reveals strong effects of window size
(F3 = 836.91, p < 0.001) and population (F1 = 11.80, p <
0.01), but not of the feature set (F1 = 0.12, p = 0.74). Across
all experiments, LPCCs give slightly lower error than MFCCs,
on average (20.17% vs. 20.32%, respectively). Except for the
(relatively inaccurate) case where no context frames are used,
generic control models always give higher error than generic
dysarthric models, by absolute differences of 2% to 2.35%.
It is important to note that we only consider main effects of
these grouping variables – given the different dimensionality of
MFCC and LPCC, one cannot make direct interaction compar-
isons across these groups and context sizes simultaneously.

Speaker-dependent models always outperformed associ-
ated speaker-independent models. The difference in error
rates between generic and individualized models is larger for
dysarthric speech than non-dysarthric speech. At best, the
speaker-dependent dysarthric models achieved a 5.06% lower
rate than the speaker-independent dysarthric models, while
speaker-dependent non-dysarthric models obtained at best a dif-
ference of 2.85%.

Interestingly, it is easier to detect stuttering in dysarthric
speech than in non-dysarthric speech. In fact, error rates were
consistently lower for the dysarthric speech (≈14%) than for
the non-dysarthric speech (≈16%). This suggests that the im-
plemented method is robust to this particular speech disorder.

4. Experiment 2: non-speech dysfluencies
We repeated the methodology of Experiment 1, but considered
instead ‘lower-level’ dysfluencies and non-speech vocal noise
that can affect speech recognition and synthesis systems.

Here, annotation is based on the phonetic transcriptions
provided in the TORGO corpus. Segments labeled as noi
(noise) were examined and manually tagged with either none,
or any combination of the following three dysfluency types:

aspiration Noise related to breathing, i.e., inspiration or expi-
ration.

mouth/lips Noise produced by the lips and/or mouth/tongue.

vocal Non-speech voicing (e.g., laughter, hesitation...).



Table 3: Average error rate (%, 5-fold cross-validation) of stut-
ter detection using MFCC and LPCC features across speaker
groups. Speakers F03, M04, and MC04 are also examined in-
dividually due to their relatively high rates of stuttering.

Window size
Speaker(s) 0 ±1 ±3 ±5

M
FC

C

F03 38.36 9.93 9.74 9.55
M04 38.61 12.80 12.70 12.60

all dysarthric 40.84 14.95 14.82 14.61
MC04 38.24 14.49 14.27 14.05

all controls 40.00 17.30 17.09 16.88
all speakers 40.74 15.21 15.07 14.93

L
PC

C

F03 38.31 9.87 9.50 9.13
M04 38.56 12.81 12.61 12.41

all dysarthric 40.80 14.95 14.68 14.42
MC04 38.18 14.44 14.00 13.57

all controls 39.94 17.26 16.84 16.42
all speakers 40.70 15.20 14.92 14.64

The procedure of classification and evaluation is the same
as in Experiment 1, except only individuals with dysarthria are
considered, since the amount of occurrences of such dysfluen-
cies in control speakers were not significant. Among all 1403
recordings of the head-worn microphones for dysarthric speak-
ers with phonetic transcriptions, we found 706 instances of as-
piration noise, 496 of mouth/lips, and 111 of vocal noise.

Table 4: Average error rate (%, 5-fold cross-validation) across
other dysfluencies using MFCC and LPCC features across
speaker groups.

Window size
Type 0 ±1 ±3 ±5

M
FC

C aspiration 39.98 19.19 19.60 19.11
mouth/lips 43.28 24.95 24.81 24.68

vocal 46.15 25.75 26.83 25.81

L
PC

C aspiration 40.08 19.35 19.40 19.14
mouth/lips 43.31 25.01 25.03 24.83

vocal 46.18 25.81 25.92 25.42

Table 4 shows the average error rates of detecting the differ-
ent non-speech dysfluencies using 5-fold cross validation with
MFCC and LPCC features. The accuracy increases with the use
of one or more frames of context, but adding more than one
frame does not improve the results. These types of low-level
dysfluencies are significantly localized in time or highly char-
acterized by their spectral shape. Therefore, adding more con-
textual information does not appear to improve classification.

Dysfluencies of type aspiration are consistently more ac-
curately classified than mouth/lips, which in turn are easier to
classify than vocal. The aspiration dysfluencies contain a very
characteristic timbre which is easier to discriminate from other
speech sounds than the other classes. On the other hand, vocal
dysfluencies are the closest to actual speech phones, leading to
a more difficult differentiation. We note that aspiration dysflu-
encies are usually longer and since, in our current setting, an
entire region is tagged with the noise type without performing
segmentation, frames containing aspiration may be systemati-
cally more accurately labelled than those with other more local-
ized noises such as mouth/lips or vocal.

5. Discussion and future work
We investigated the ability of a DBN-DNN to classify repeti-
tion stuttering and non-speech dysfluencies in dysarthric and
non-dysarthric speech using MFCCs and LPCCs as input. Re-
sults indicate that repetition stuttering is detected with very sim-
ilar (though significantly different) error rates across dysarthric
and non-dysarthric speech. Increasing the dimension of the in-
put, across either feature to the DBN-DNN consistently lowers
the error rate, and there is no statistically significant difference
between using MFCC or LPCC input features. Moreover, we
find that among non-speech dysfluencies, aspiration is more ac-
curately identified than mouth/lip dysfluency, which in turn is
more accurately identified than other vocal activity. In both
cases, a greater investigation into the effect of context is needed.

Overall, the results achieved here are comparable to similar
work discussed in Section 1. However, given the somewhat lim-
ited number of stuttering and non-speech disturbances within
TORGO, the results can be considered preliminary; more work
with additional data sets would be needed to make more con-
clusive claims.

Since dysarthric speakers are more likely to stutter than
non-dysarthric speakers, this must be considered when com-
paring across groups, especially when comparing aggregate
speaker-independent models. Future work includes additional
types of stuttering detection, including prolongations and stop-
gaps in spontaneous speech. We are also interested in ex-
tending and combining additional feature types, including au-
toencoders, and alternatives to the DBN structure itself. How-
ever, this paper has clearly shown that state-of-the-art stuttering
detection, which had previously focused on non-pathological
speech, can be applied to dysarthric speech. This automates a
crucial component in systems that automatically improve the in-
telligibility of speech signals. Specifically, correcting dysfluen-
cies has previously been shown to be a highly (if not the most)
effective transformation that can be applied to speech signals
[2]. Whereas that work depended on gold-standard phonemic
transcriptions, our current work on stutters is relatively accu-
rate given only the acoustics.

6. Acknowledgements
This work is partially funded by Thotra Incorporated, of which
Frank Rudzicz is the CEO. It is also supported by an NSERC
Discovery grant (RGPIN 435874) and a grant from the Nuance
Foundation.

7. References
[1] A. B. Kain, J.-P. Hosom, X. Niu, J. P. H. van Santen, M. Fried-

Oken, and J. Staehely, “Improving the intelligibility of dysarthric
speech,” Speech Communication, vol. 49, no. 2, pp. 743–759,
2007.

[2] F. Rudzicz, “Adjusting dysarthric speech signals to be more in-
telligible,” Computer Speech and Language, vol. 27, no. 6, pp.
1163–1177, 2013.

[3] L. S. Chee, O. C. Ai, and S. Yaacob, “Overview of automatic
stuttering recognition system,” in Proc. International Conference
on Man-Machine Systems, no. October, Batu Ferringhi, Penang
Malaysia, 2009, pp. 1–6.

[4] A. Czyzewski, A. Kaczmarek, and B. Kostek, “Intelligent Pro-
cessing of Stuttered Speech,” Journal of Intelligent Information
Systems, vol. 21, no. 2, pp. 143–171, 2003.

[5] M. Wiśniewski, W. Kuniszyk-Jóźkowiak, E. Smoka, and
W. Suszyski, “Automatic detection of disorders in a continuous



speech with the hidden Markov models approach,” in Advances in
Soft Computing, 2007, vol. 45, pp. 445–453.

[6] ——, “Automatic detection of prolonged fricative phonemes with
the hidden Markov models approach,” Journal of Medical Infor-
matics & Technologies, vol. 11, pp. 293–297, 2007.

[7] S. P. Rath, D. Povey, K. Vesel, and J. Cernock, “Im-
proved feature processing for Deep Neural Networks,”
in Intespeech, 2013, pp. 109–113. [Online]. Available:
http://www.danielpovey.com/files/2013 interspeech nnet lda.pdf

[8] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep
Neural Networks for Acoustic Modeling in Speech Recognition,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97,
2012.

[9] L. S. Chee, O. C. Ai, M. Hariharan, and S. Yaacob, “Automatic
detection of prolongations and repetitions using LPCC,” Interna-
tional Conference for Technical Postgraduates 2009, TECHPOS
2009, 2009.

[10] U. Bhattacharjee, “A comparative study of LPCC and MFCC fea-
tures for the recognition of Assamese phonemes,” International
Journal of Engineering Research & Technology, vol. 2, no. 3, pp.
1–6, 2013.

[11] T. Gulzar, A. Singh, and S. Sharma, “Comparative Analysis of
LPCC , MFCC and BFCC for the Recognition of Hindi Words
using Artificial Neural Networks,” International Journal of Com-
puter Applications, vol. 101, no. 12, pp. 22–27, 2014.

[12] F. Rudzicz, A. K. Namasivayam, and T. Wolff, “The TORGO
database of acoustic and articulatory speech from speakers with
dysarthria,” Language Resources and Evaluation, vol. 46, no. 4,
pp. 523–541, 2012.

[13] M. Tanaka and M. Okutomi, “A Novel Inference of a
Restricted Boltzmann Machine,” in International COnference on
Pattern Recognition, 2014, pp. 1526–1531. [Online]. Available:
http://www.ok.ctrl.titech.ac.jp/ mtanaka/ICPR2014mtanaka.pdf


