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Abstract
Pronunciation variation is a major problem in disordered speech
recognition. This paper focus on handling the pronunciation
variations in dysarthric speech by forming speaker-specific lex-
icons. A novel approach is proposed for identifying mispronun-
ciations made by each dysarthric speaker, using state-specific
vector (SSV) of phone-cluster adaptive training (Phone-CAT)
acoustic model. SSV is low-dimensional vector estimated for
each tied-state where each element in a vector denotes the
weight of a particular monophone. The SSV indicates the pro-
nounced phone using its dominant weight. This property of
SSV is exploited in adapting the pronunciation of a particular
dysarthric speaker using speaker-specific lexicons. Experimen-
tal validation on Nemours database showed an average relative
improvement of 9% across all the speakers compared to the sys-
tem built with canonical lexicon.
Index Terms: Dysarthric speech recognition, phone-CAT, lex-
ical modeling, pronunciations, phone confusion matrix

1. Introduction
Clinical applications of speech technology play an important
role in aiding communication for people with motor speech dis-
orders. One such motor speech disorder is dysarthria, acquired
secondary to stroke, traumatic brain injury, cerebral palsy etc.
This affects more than one subsystem of speech production,
leading to unintelligible speech. Some of the common char-
acteristics of dysarthria include slurred speech, swallowing dif-
ficulty, slow speaking rate with increased effort to speak and
muscle fatigue while speaking [1, 2]. All these effects affect
the speech intelligibility but also the social interaction abil-
ity of people with speech disorders. Clinical applications of
speech technology provide way to improve their communica-
tion in terms of the alternative and augmentative communica-
tion (AAC) devices. Automatic speech recognition (ASR) sys-
tems play a major role as an AAC device for aiding communi-
cation in terms of command/control in their daily lives. Only
handful of databases are available for dysarthric speech, due to
the fatigue and discomfort faced by the dysarthric speaker in
providing data for longer time. With such constraints, acous-
tic models are usually built-in speaker adaptation framework
[3, 4, 5].

The impairment in phonatory subsystem of a person af-
fected with dysarthria leads to pronunciation errors. The slow
rate of speech leads to a single syllable word being mis-
recognized as two syllable words. Frequent occurrences of
non-speech sounds like hesitations false starts occur as part
of dysarthric speech. These hesitations also lead to mis-

recognition of words as explained in [6, 4]. Imprecise consonant
production is another characteristic of dysarthric speech. Since
consonant production involves complex articulations compared
to vowels, the errors are more frequent [7]. Muscle fatigue and
lack of breath support increase the pronunciation errors of a
dysarthric speaker [8].

All these effects increase the rate of insertions, substitu-
tions, deletions and distortions in the dysarthric ASR systems.
Thus the issue of pronunciation errors makes the design of
dysarthric ASR system more challenging. The focus of this pa-
per lies in handling these pronunciation errors especially substi-
tutions by improving the lexical models. The lexicon contains
the multiple pronunciations for each word expanded in terms of
phones. The alternate pronunciations of a word is either formed
manually [9] or obtained from the list of phone confusion pairs
[10, 11]. This paper introduces a recently developed phone-
cluster adaptive training (Phone-CAT) [12] acoustic modeling
technique. Phone-CAT method build robust acoustic models
using lesser number of parameters and limited amount of data.
Thus the method can be used for limited data available domains
especially in the case of dysarthric speech recognition. The
main contributions of this paper are as follows:

• A novel approach to form speaker-specific phone con-
fusion matrix using the low-dimensional SSV of Phone-
CAT

• Using the speaker-specific phone confusion matrix to
identify the confusion pairs (substitution phones) to form
alternate pronunciations in the speaker-specific lexicon

Our proposed approach helps in forming phone confusion ma-
trix directly from the Phone-CAT acoustic model, compared to
the existing methods [10, 11] which align the decoded transcrip-
tion with canonical transcription to form the phone confusion
matrix. Thus we circumvent the usage of expensive decoding
process. This preliminary study using Nemours database shows
a relative performance improvement of 9% using our proposed
approach compared to baseline model built using canonical lex-
icon.

2. Related work
Multiple pronunciations of a word in the lexicon improves the
recognition performance. The lexical models are improved
either implicitly or explicitly handling the pronunciation er-
rors [13]. In order to improve the lexical models, the phones
mispronounced by each dysarthric speaker need to be identi-
fied. Earlier work handled multiple pronunciations using ex-
pert knowledge by adapting pronunciations manually [9]. Per-



sonalized speaker articulation patterns were obtained from the
speaker-adapted models along with the confusion matrix. These
speaker-adapted models were obtained using universal disor-
dered matrix and the posterior probability from the ASR system
in an unsupervised fashion [13].

Another approach for identifying the mispronounced
phones is by aligning the decoded text with the true transcrip-
tion. A phone confusion matrix is formed using the decoded
transcription and canonical transcription. This phone confusion
matrix is used to identify the mispronunciations [10]. The sub-
stitution, insertion and deletion errors, were modeled as discrete
hidden Markov model (HMM) called metamodels [11]. An-
other variant of this system is to train the extended metamod-
els from an integrated confusion matrix using genetic algorithm
[14].

The concept of weighted finite state transducer (WFST) im-
proves the performance of speech recognition systems. Com-
posing confusion matrix along with the lexicon and language
models in the WFST framework provides complementary infor-
mation to the system. This concept was used in speech recog-
nition [15] and keyword searching [16]. In dysarthric speech
recognition framework, different methods were used to form
confusion matrices to be used with WFST. One such method
is to use KL distance measure between two context-dependent
triphones to form confusion matrix [17, 18]. Deep neural net-
works (DNN) can also be used to improve pronunciation mod-
els. The posterior probabilities from pre-trained DNN were
used to identify mispronunciations. They were further ana-
lyzed to generate pronunciations to form speaker-specific lex-
icons [19]. All the above methods, uses confusion matrix ob-
tained by aligning the decoded transcriptions with the canonical
transcriptions to improve the lexicons.
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Figure 1: Phone-CAT architecture

In this paper, a novel approach is proposed to form the
confusion matrix using the low-dimensional vector from the
Phone-CAT acoustic model. Each tied-state in Phone-CAT
model is modeled using SSV. The dominant weight of the SSV
represents the pronounced phone. The mispronounced phone
of each dysarthric speaker obtained using SSV is compared
with the canonical phone to form the phone confusion matrix.
This matrix is used to improve the lexical models by provid-
ing alternate pronunciations of words. Since each speaker has
a separate pronunciation pattern, speaker-specific lexicons are

formed. Acoustic models rebuilt using these lexicon, improve
the performance of the system.

3. Phone-Cluster Adaptive Training
Acoustic Models

The acoustic models are usually built using hidden Markov
model–Gaussian mixture model (HMM–GMM) framework.
The acoustic variations of speech due to age, gender, environ-
mental changes and pronunciation variations are being mod-
eled using GMM. The sequence information involving co-
articulation is modeled as HMM. The triphone model repre-
sents a phone along with its left and right contexts capturing
the co-articulation effects. For example, consider the triphone
/ax/− /b/+ /k/ representing the model for the center phone
/b/, capturing the effect of its left context /ax/ and right con-
text /k/. Several triphones with similar acoustic characteristics
and same center phone /b/ are clustered to form a single tied-
state. The GMM parameters are then estimated independently
to model each tied-state. This estimation requires huge num-
ber of parameters and sufficient amount of data. This issue is
handled using the recently proposed phone-CAT acoustic model
by robustly modeling the available data with lesser number of
parameters.

Phone-CAT is a HMM-GMM system in which the GMM
parameters are represented in a compact form. In other words,
the GMM for each tied-state is formed by the linear combina-
tion of all the monophone GMMs in that language. For ex-
ample, the tied-state /ax/ − /b/ + /k/ containing triphones
/ax/−/b/+/k/,/ch/−/b/+/k/,/ae/−/b/+/k/ is formed
from the linear combination of all the monophone GMMs like
/sil/, /ax/, .../k/, ..., /zh/. The weights of each monophone
GMMs are represented by v(1)j , v

(2)
j . . . v

(P )
j , where P is the

number of monophones. The vector containing the mono-
phone weights is called SSV and is represented as vj =[
vj

(1) vj
(2) . . vj

(P )
]T

with P dimensions. The
monophone GMMs are in turn formed by adapting the universal
background model (UBM) using maximum likelihood linear re-
gression [20] transformation. The UBM is a GMM built using
the available speech data from all the speakers. This UBM is
adapted using the transformation matrices W1,W2, ....,WP

for each of the P monophones, forming P monophone GMMs.
The Phone-CAT architecture is shown in figure 1. The GMM
parameters of the tied-state model are: means µji, covariances
Σi and Gaussian priors wji.

The mean parameter for each monophone models µ(p)
i with

Gaussian mixture i is combined to form the mean parameter of
the tied-state j using the following equations:

µ
(p)
i = WP ξi = WP [µi 1]T

µji =

P∑
p=1

µ
(p)
i v

(p)
j

Here ξi is the extended mean vector [µi 1]T with µi as
the canonical mean of the Gaussian component i of the UBM.
Since the mean µji and the Gaussian prior wji are represented
in terms of the vector SSV vj as in [12], the parameters are rep-
resented in low dimensions. Also the covariances Σi are esti-
mated in a shared fashion across the tied-states. This reduction
in the number of parameters helps in reducing the amount of
data needed for estimation. More details of the model training
and estimation of each parameters are explained in [12].



4. Importance of state-specific vectors
The SSV is a low-dimensional vector of dimension P represent-
ing each tied-state j uniquely. It captures the context informa-
tion since it represent the weights with which each monophone
GMM linearly combine to form a single tied-state. We know
that different triphones with the same acoustical characteristics
are tied together in order to form tied-state. The SSV plot of the
second state of the triphone /ch/ − /ix/ + /ng/ is shown in
figure 2.

It is clearly shown that, the dominant weight corresponds to
the center phone /ix/. Apart from the center phone, the left and
right context phones also get some considerable weight. The
negative value represents the direction of the vector, but we are
interested only in the absolute value of the elements of the SSV.

Figure 2: SSV plot of the second state of the triphone /ch/− /ix/+

/ng/

Figure 3: This two-dimensional scatter plot is obtained using the
t-SNE toolkit by plotting the SSV of all the tied-states in Nemours
database

A statistics of the dominant weight property of SSV was
performed for unimpaired (control) speech data from Nemours
speech database. The aim of the task was to check the statistics
of the SSV picking the center phone of the tied-state correctly.
It was found that out of 204 tied-states, the dominant component
of SSV correctly picks the center phone 76% of the times and
the top three weight values in the SSV picks up center phone
88% of the time. A similar analysis was also performed for the
standard Switchboard database (≈300 hours of data), with 2400
tied-states. It was found that 70% of the time, the center phone
was correctly picked up by the dominant component of SSV.

Also ≈92% of the time, the left/center/right phones are picked
up as the dominant component of SSV [21]. This shows that the
SSV uniquely represents the enunciated phone (center phone
of the tied-state) through its dominant weight most likely. The
scatter plot of the P dimensional SSV reduced to two dimen-
sion is shown in the figure 3. The SSV related to each cluster
represents a particular monophone (each in different color, a to-
tal of 39 phones were present in the Nemours database). These
clusters are located at articulatory position of the vowel triangle
in a well discriminated manner. This shows that SSV has the
capacity to capture the phonetic information along with context
information. Thus the analysis of SSV in this section leads us
to the following conclusions:

• The dominant weight in SSV most likely represents the
enunciated phone (center phone) of the tied-state

• Provides discriminable phonetic class information, since
each vector is modeled for a particular tied-state

• SSV is hypothesized to capture the pronunciations of
each dysarthric speaker when speaker-specific Phone-
CAT models are built

This leads us to proceed to the proposed method of building
Phone-CAT model specific to each speaker, thereby capturing
the pronunciations of each dysarthric speaker.

Table 1: Extract dysarthric enunciated phone from SSV
Tied-states
(Canl)

Phones
sil aa . . . ey . . . zh Dysp

∗ − /sil/ + ∗ 1.75 0.21 . . . 0.38 . . . 0.12 /sil/

∗ − /aa/ + ∗ 0.03 0.09 . . . 0.01 . . . 0.08 /aa/

...

...
...

...
...

...
...

...

∗ − /jh/ + ∗ 0.19 0.11 . . . 0.36 . . . 0.13 /ey/

ch−/ix/+ng 0.48 0.50 . . . 0.01 . . . 0.22 /aa/

n − /ix/ + k 0.10 0.90 . . . 0.25 . . . 0.76 /aa/

...

...
...

...
...

...
...

...

∗ − /zh/ + ∗ 2.01 0.02 . . . 0.10 . . . 3.06 /zh/

Canl - canonical pronunciation; Dysp - dysarthric pronunciations
The numbers inside circle shows the absolute maximum value in each
SSV corresponding to dysarthric pronounced phone

5. Proposed Method for Improving Lexical
Models

5.1. Phone-CAT model for each dysarthric speaker

The major step of our proposed method is to build speaker-
specific Phone-CAT model. Initially, using the unimpaired
speaker’s data in the dysarthric database, a Phone-CAT model
is built. The speaker-specific Phone-CAT model is obtained
from the unimpaired speaker model by re-estimating the SSV
and providing dysarthric speaker’s data in maximum likelihood
framework. The SSVs are initialized as (1/number of mono-
phones), to allow the system to learn the weights of the mono-
phone GMM using the available dysarthric speaker’s data. At
the end of this training process, Phone-CAT speaker-specific
models are built. The architecture of speaker-specific Phone-
CAT model is shown in figure 1. Finally, we obtain a set of
tied-states specific to each dysarthric speaker from the speaker-
specific Phone-CAT model.
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Figure 4: Spectrogram of the word “Badge” spoken by unimpaired
speaker (on top) and dysarthric (BV) speaker (bottom). The spectro-
grams are plotted for a part of the waveform containing “The Badge is
lifting the Beige”.
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Figure 5: SSV for the second state of the triphone /ae/−/jh/+/sil/

for the unimpaired speaker (top) and dysarthric speaker BV (bottom).

5.2. Identification of mispronunciations made by the
dysarthric speaker using SSV

Having built the speaker-specific Phone-CAT models, the next
step is to extract the unique SSV associated with the set of
tied-states. The P -dimensional SSV is extracted from each
dysarthric speaker’s Phone-CAT model. Using the dominant
weight property of SSV discussed in section 4, the absolute
maximum weight value of the SSV is obtained for each tied-
state from each dysarthric speaker’s Phone-CAT model. Since
the pronounced phone is captured by the dominant weight of the
SSV, the phone corresponding to the absolute maximum weight
is hypothesized as the pronunciations made by the dysarthric

speaker as shown in table 1. There may be cases where the
canonical pronunciation (center phone of the tied-state) does
not represent the observed pronunciation (phone associated
with the absolute maximum weight of the SSV). In that case,
it means that the phone model built for the speaker represents
the observed pronounced phone rather than the canonical pro-
nounced phone.

5.2.1. Analysis of the mispronunciations picked up by the SSV

Figure 5 shows the SSV plot for the second state of the triphone
/ae/ − /jh/ + /sil/ of unimpaired and dysarthric speaker
(BV). As discussed in Section 4, the dominant weight indicates
the pronounced phone /jh/ for the triphone of the unimpaired
speaker. But for dysarthric speaker, instead of /jh/, the phone
/ey/ gets the dominant weight. This indicates that the phone
/jh/ is mispronounced as /ey/. In order to analyze our hy-
pothesis of the dysarthric speaker pronunciations captured by
the dominant weight of the SSV, perceptual test was conducted.
The audio samples of the BV speaker in the context for the
word “Badge − b ae jh” (canonical pronunciation) was heard
as “Badge− b ae ey” (dysarthric speaker’s observed pronunci-
ation). The audio sample was verified by 10 naive listeners and
their mean opinion score was taken.

To further support this hypothesis, the spectrogram of
the word “Badge” pronounced by unimpaired and dysarthric
speaker is shown in figure 4. The fricative /jh/ is clearly
visible in the spectrogram of unimpaired speaker, while for
dysarthric speaker the diphthong /ey/ occurs instead of ac-
tual phone /jh/. Hence the second state of the triphone model
/ae/−/jh/+/sil/ is more acoustically closer and represents
the second state of the triphone model /ae/−/ey/+/sil/, cap-
tured directly by the SSV using its dominant weight. Thus we
confirm our hypothesis that the phone captured by the SSV us-
ing its dominant weight corresponds to the pronunciations made
by the dysarthric speaker.

5.3. Formation of phone confusion matrix using SSV

Using the SSV corresponding to a tied-state for a particu-
lar dysarthric speaker’s model, a phone confusion matrix is
formed. The set of canonical pronunciations (center phone of
the tied-state) and the set of observed dysarthric speaker’s pro-
nunciations (absolute maximum weight of the SSV for each
tied-state) are used to form the phone confusion matrix. From
each dysarthric speaker’s Phone-CAT model, speaker-specific
phone confusion matrix is formed. Each row of the matrix
corresponds to canonical pronunciations and each column rep-
resents the observed dysarthric speaker’s pronunciations. The
sum of all elements of the matrix corresponds to the total num-
ber of tied-states.

The diagonal elements represent the number of correct pro-
nunciations made by the speaker, where the center phone of the
tied-state is correctly picked up by the SSV as its dominant
weight. The off-diagonal elements represents the mispronun-
ciations made by that speaker, where the center phone does not
correspond to the dominant weight of the SSV. Value in each el-
ement of the matrix say aij, represents the frequency of occur-
rence of the canonical phone i being mispronounced as phone
j. This phone confusion matrix also correlates with the intelli-
gibility scores of the different severity levels of the speakers.
Since the diagonal elements represent the correct pronuncia-
tions, the number of elements across the diagonal varies with re-
spect to the severity level of dysarthria. As the degree of impair-
ment increases, the diagonal pattern disintegrates. Thus phone



confusion matrix helps in the objective assessment of dysarthric
speech [22]. Apart from assessment, phone confusion matrix is
used for improving the lexical models which is the main focus
of this paper.

Figure 6: Schematic diagram of the proposed method to build an
adapted lexicon from the phone confusion pairs using context depen-
dent mapping. Here the canonical phone /f/ is confused with /ey/ when
/f/ occurs in between the context /er/ and /ix/. Hence the word “surfing
— s er f ix ng” gets the alternate pronunciation as “surfing — s er ey ix
ng” while the words fat, fin and fine are neglected.

Algorithm 1 Procedure to form phone confusion matrix and mod-
ified lexicon from SSV

1. For each dysarthric speaker

(a) Build the Phone-CAT acoustic model and extract the P-
dimensional SSV from the set of tied-states

(b) Absolute maximum weight of each SSV is picked up as the
dysarthric speaker’s pronounced phones as shown in table 1

(c) Using the set of canonical pronunciations (center phones of the
tied-states) and the observed dysarthric pronunciations (abso-
lute maximum values of the SSV), a phone confusion matrix is
formed

(d) The list of substitution phones are obtained from the phone con-
fusion matrix using a threshold

(e) Obtained confusion pairs are mapped only for those canonical
phones when their context matches with the corresponding tied-
state

(f) The modified lexicon along with the alternate pronunciations is
then used to rebuild the acoustic models

5.4. Improved lexical models using SSV

The phone confusion matrix captures the mispronunciations
made by each dysarthric speaker. The list of substitution phones
are obtained from the set of mispronunciations in the matrix us-
ing a threshold rule. The substitution phones are further used
to form alternate pronunciations forming speaker-specific lexi-
cons. For example, if the phone /f/ is mispronounced as /ey/
in the confusion matrix with high recurrence, then it is taken as
substitution phone. For the word “five” the alternate pronun-
ciation in the lexicon is given as:

[Five]− > /f ay v/ (canonical pronunciation)
[Five]− > /ey ay v/ (alternate pronunciation)

It was shown that adding context-dependent pronunciation vari-
ation models helps in improving the performance of the sys-
tem [18]. The triphones corresponding to the phone confu-
sion pairs, are used to substitute the phones in the lexicon,
for the words with the corresponding triphone context informa-
tion as in figure 6. In the figure, /f/ is substituted with /ey/
only for the word “surfing” which contains the triphone context
/er/− /f/+ /ix/. For other words with phone /f/, no alter-
nate pronunciations were given. This helps in reducing the size
of the lexicon.

The number of confusion pair to be substituted from the
confusion matrix is chosen based on the threshold rule. This
helps in reducing the number of confusion pairs avoiding the
selection of alternative confusion pair for each canonical phone.
This modified lexicon is composed with grammar in WFST
framework. In this approach, we mainly focus on modeling the
substitution errors using the alternate pronunciations. Further,
the modified lexicon is used to rebuild the acoustic model in the
HMM-GMM framework.

6. Experimental setup
The experiments were performed in Kaldi [23] open-source
speech recognition toolkit. Nemours database [24] was used for
our experiments. It contains continuous speech utterances with
16 KHz sampling rate. It has 11 speakers, out of which only
10 speakers were used for our experiments [24]. Each speaker
recorded 74 nonsensical sentences of the form “The N1 is Ving
the N2” where the N1 and N2 are monosyllabic noun and V is
the disyllabic verb. The lexicon is expanded in terms of phones
with vocabulary size of 113 words and 39 phones in ARPAbet
(advanced research project agency) symbol set is used for ex-
perimentation. One unimpaired speaker’s data covering all the
sentences spoken by each dysarthric speaker was recorded as
control subject. The standard Frenchay dysarthric assessment
(FDA) scores were also provided for each dysarthric speaker.
The train data contains 490 utterances and test data contains
250 utterances, selected using 3-fold cross validation procedure.
Trigram language model was used and the performance of the
continuous density hidden Markov model (CDHMM) is mea-
sured using word error rate (WER). Baseline CDHMM is built
with 200 tied-states and 10 Gaussian mixture components. The
baseline system uses the canonical lexicon for both training and
testing.

Rate Mdl FB MH BB LL JF RL RK BK BV SC

Ins
Base 0 0 1 0 2 6 0 8 0 7
Expt

1
0 0 1 0 2 6 0 7 0 7

Expt
2

0 0 0 0 0 5 0 6 0 3

Del
Base 0 0 0 0 0 0 4 18 0 0
Expt

1
0 0 0 0 0 0 2 17 0 0

Expt
2

0 0 0 0 0 0 0 17 0 0

Table 2: Rate of insertions (Ins) and deletions (Del) for different models (mdl):
Baseline (Base), Expt 1 and Expt 2

7. Results and Discussion
7.1. Results with modified lexicons : Proposed method

Two different experiments were performed to compare with
the baseline CDHMM (Base) system. First is to train acous-
tic model using canonical lexicon and decoding the text using
the modified lexicon (Expt 1). The second experiment is to use
the modified lexicon for both training and testing process (Expt
2). Speaker-wise results for both the experiments are shown
in the table 4. Comparing with baseline, all the speakers obtain
improved performance for the system rebuilt using the modified
lexicons (Expt 2). On an average, the relative improvement is
13.1%. Comparing with baseline system, an relative improve-



ment of 5.4% is obtained across all the speakers for the system
only tested using modified lexicon (Expt 1). Severe category
speakers shows considerable improvement compared to mod-
erate and mild category speakers. Substitutions form a major
portion of the error compared to insertions and deletions in our
model. Hence we focused on reducing the number of substitu-
tion errors in this paper. Figure 7 shows the reduction in the rate
of substitutions for the proposed model compared to baseline
system. The rate of insertions and deletions were also reduced
which is shown in table 2.
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Figure 7: Substitution rate for different models

Table 3: Comparison of proposed method with existing method
Lexicon Usage Method/

Model
type

MH
(Mild)

RK
(Moder-

ate)

SC
(Severe)

Training
canonical +
Testing
canonical

Baseline
18.7 31.3 29.3

Training
canonical +
Testing modified

(Expt 1)

Existing
method

17.3 29.3 27.3

Proposed
method

16.7 29.3 27.3

Training
modified +
Testing modified

(Expt 2)

Existing
method

16.0 30.0 26.0

Proposed
method

15.3 29.3 23.3

% R.I 4.2 2.2 10.3
Here % R.I denotes relative improvement with respect to existing
method

7.2. Comparison with Existing Method

Some of the existing methods in literature involve forming
phone confusion matrix aligning the recognized phoneme se-
quence with reference transcriptions [10]. Then using rule-
based method, speaker dependent multiple pronunciation lexi-
cons are formed. In [11], the recognized transcription is aligned
with the reference transcription to form the phone confusion
matrix. The confusion pairs are then used to provide multiple
pronunciations in the lexicon. In order to compare our proposed
method with the existing method, the confusion pairs from the
phone confusion matrix formed by aligning the recognized tran-
scription with the reference transcription on baseline model are
used to form the lexicon.

Table 4: Results of lexical modeling for Nemours database in terms of
% word error rate (% WER)

Severity Speakers Baseline
CDHMM

Testing
using new

lexicon
(Expt 1)

Train +
Test using

new
lexicon
(Expt 2)

Mild

FB 12.0 11.3 10.0
MH 18.6 17.3 15.3
BB 16.6 16.0 15.3
LL 28.6 26.6 24.6

Moderate
JF 24.0 22.0 22.0
RL 29.3 28.0 24.0
RK 31.3 29.3 29.3

Severe
BK 54.0 52.0 50.0
BV 29.3 27.3 23.3
SC 40.6 39.3 33.3

Average 28.7 26.9 24.7

Similar to section 7.1, two different experiments (Expt 1
and Expt 2) were performed on baseline model using the modi-
fied lexicon formed using this phone confusion matrix for three
different severity category. As shown in table 3, proposed
method using phone confusion matrix formed from SSV shows
an relative improvement of 10.3% compared to existing method
using phone confusion matrix formed using decoded transcrip-
tion. In the existing method, a single frame is involved in esti-
mating the likelihood with respect to the corresponding acoustic
model. While in case of our proposed approach, a set of frames
corresponding to a tied-state label is involved in the estimation
of SSV. Thus the estimated SSV are more reliable in identifying
the confusion pairs which helps in improving the recognition
performance over existing method.

8. Conclusions
This paper focuses on improving the performance of dysarthric
speech recognition systems by handling pronunciation errors.
A novel approach of forming phone confusion matrix for each
dysarthric speaker using SSV from Phone-CAT model is dis-
cussed. Phone-CAT model handles the data efficiently by using
less number of parameter for estimation. The SSV captures the
context and phonetic information. It represent the enunciated
phone using the dominant weight. This property is used to iden-
tify the mispronunciations made by each dysarthric speaker, by
building speaker-specific Phone-CAT model. Using the phone
confusion matrix, alternate pronunciations are formed in per-
sonalized speaker lexicons. These modified lexicons improves
the performance of the dysarthric ASR system. This prelim-
inary study shows that the proposed phone confusion matrix
using SSV captures the speaker-specific pronunciation patterns
and avoid the usage of decoded transcription. This approach has
to be explored in detail to analyze, model the error pattern and
handle the insertion and deletion errors which forms our future
work.
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