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Introduction

We are pleased to bring you the Proceedings of the 7th Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT), held in San Francisco, USA, on 13 September,
2016. We received 24 paper submissions, of which 17 were accepted; 8 papers were chosen for
oral presentation and 9 for presentation as posters or demos. All 17 papers are included in this
volume.

This workshop was intended to bring researchers from all areas of speech and language tech-
nology with a common interest in making everyday life more accessible for people with phys-
ical, cognitive, sensory, emotional or developmental disabilities. This workshop builds on six
previous such workshops (co-located with conferences such as ACL, NAACL, EMNLP and
Interspeech); it provides an opportunity for individuals from research communities, and the
individuals with whom they are working, to share research findings, and to discuss present and
future challenges and the potential for collaboration and progress.

While Augmentative and Alternative Communication (AAC) is a particularly apt application
area for speech and natural language processing technologies, we purposefully made the scope
of the workshop broad enough to include assistive technologies (AT) as a whole, even those
falling outside of AAC. Thus we have aimed at broad inclusivity, which is also manifest in the
diversity of our Program Committee. We are also very delighted to have Prof. Helen Meng
from The Chinese University of Hong Kong, as invited speaker.

The success of SLPAT 2016 was due to the authors who submitted such interesting and diverse
work and which generated so intense discussions. Finally, we must thank all the people who
made this event possible especially members of the Program Committee for completing their
reviews promptly, and for providing useful feedback for deciding on the program and preparing
the final versions of the papers.

Heidi Christensen, François Portet, Thomas Quatieri, Frank Rudzicz, and Keith Vertanen

Co-organizers of SLPAT 2016
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Tag Thunder: Web Page Skimming in Non Visual Environment Using
Concurrent Speech

Jean-Marc Lecarpentier, Elena Manishina, Fabrice Maurel
Stéphane Ferrari, Emmanuel Giguet, Gael Dias, Maxence Busson

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
{firtsname.lastname}@unicaen.fr,

Abstract
Skimming and scanning are two strategies generally used
for speed reading. Skimming allows a reader to get a
first glance of a document; scanning is the process of
searching for a specific piece of information in a docu-
ment. While both techniques are available in visual read-
ing mode, it is rather difficult to use them in non visual
environments. In this paper, we introduce the concept
of tag thunder, which provides speed reading non-visual
techniques similar to skimming and scanning. A tag thun-
der is the oral transposition of the tag cloud concept. Tag
cloud key terms are presented using typographic effects
which reflect their relevance and number of occurrences.
Within a tag thunder, the relevance of a given key term is
translated into specific speech effects and its position on
the page is reflected in the position of the corresponding
sound on a 2D stereo space. All key terms of a tag thun-
der are output according to a concurrent speech strategy,
which exploits the cocktail party effect.

In this paper, we present our implementation of the
tag thunder concept. The results of the evaluation cam-
paign show that tag thunders present a viable non-visual
alternative to visual speed reading strategies.
Index Terms: non-visual web navigation, human-computer
interaction, text-to-speech synthesis, key term extraction

1. Introduction
Most users share a similar mental process when access-
ing informative content of web pages. They get a first
glance of the page content (skimming), followed by a
quick search for specific information (scanning). Then
the reader spots different areas of interest and seeks for
specific information in identified areas using a zoom-in
zoom-out strategy.

Although several factors may influence whether skim-
ming and scanning are successful, such document prop-
erties as layout, logical structure and typographic effects
play an important role in the perception process. How-
ever, this information is usually not available to users in
non-visual environments [1]. Figure 1 illustrates how a
web page is perceived in visual and non-visual environ-

Figure 1: Perception of the same web page in visual and
non-visual environments.

Figure 2: Example of a tag cloud.

ments using a screen reader.
To solve this problem, a number of non-visual re-

placement strategies [2, 3] have been proposed by screen
readers such as faster speech rate depending on the tex-
tual block size, shortcuts which allow to jump from head-
ing to heading, reading the beginning and the end of a
paragraph, etc. However, these solutions are far from pro-
viding the reading capabilities of the visual mode [4].

This paper focuses on developing a strategy for a fast
access to web page content in non-visual situations, that
takes into account page layout and typographic clues. In
particular, we transpose the visual concept of tag cloud to
its audio version, called tag thunder.

In order to apply this concept to skimming and scan-
ning, let us first consider a web page as a set of blocks.
Figure 3 illustrates the result of a page segmentation. Each

1
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Figure 3: Segmentation of a page into zones and extract-
ing key terms

zone is represented by key terms extracted from this zone
which are combined into a tag cloud along with spatial
and typographic effects that reflect the importance and
relevance of each specific term, as shown in Figure 21.
Similarly, a tag thunder adds spatial and audio effects to
key terms.

Tag thunders use concurrent speech strategy in order
to represent the dense visual stimulus embodied by tag
clouds. This strategy is based on the Cocktail Party Ef-
fect: users may identify key terms pronounced simulta-
neously or focus their attention on key terms that interest
them among all the others.

This paper is structured as follows. In Section 2 we
provide an outline of the related work in the area of non-
visual content access strategies. In Section 3 we intro-
duce our implementation of the tag thunder concept, specif-
ically the three main steps in tag thunder creation: web
page segmentation, key word extraction and vocal syn-
thesis. Sections 4 presents the evaluation campaign we
organized in order to assess the performance of our tag
thunder implementation, as well as the potential of the
tag thunder concept in general. We conclude this paper
with a discussion and some directions for future work.

2. Related work
This Section presents some strategies developed in the
field of assistive technologies, which facilitate the access
to web content in non-visual environments.

Existing solutions for non-visual web page browsing
often use Text-To-Speech (TTS) and Braille mode. Text-
To-Speech has been used to convey document structure
to users in non-visual situations via the content vocaliza-
tion [5, 6]. To increase TTS efficiency, [7] proposed an
oral transposition model based on layout reformulation

1Image by Anand S, https://flic.kr/p/5BFE3V,
CC-BY-2.0

strategies. These strategies combine a model of the writ-
ten document [8], used to develop discursive forms from
structured texts, and a prosodic model [9] used to re-
duce this new set of sentences in a more speech-adapted
way. This approach brings a significant improvement in
memorizing and understanding TTS output for strongly
structured documents. But according to [10], the cogni-
tive load is still hard to handle in comparison to visual
reading.

Some early studies proposed to use summarization
techniques to provide visually impaired people (VIP) with
web pages skimming strategies [11]. However, a lin-
earization step destroys the page layout which is at the
core of the perception/action loop.

In the Accessibility through Simplification & Sum-
marization project [12] (AcceSS), the content perceived
as less important is removed from pages, thus modifying
the page layout. A navigation page is then built, named
guide dog page, which serves as a summary. Experiments
show positive results when this method is combined with
a JAWS screen reader. One of the limitations of this
method is the incapacity of the pattern matching algo-
rithm to correctly identify page sections. Furthermore,
no simplification is proposed at textual level, providing
no solutions to quickly browse large textual content.

SeEbrowser (Semantically Enhanced Browser) is a
VIP-adapted audio web browser [13]. Manual semantic
annotations are used to build ontologies modeling hierar-
chical relationships between elements within web pages.
As the web page is loaded, the user may ask for Browser
Shortcuts (BSs), go through them and interact using key-
board and audio feedback. Experiments show that this
alleviates the information overload. However, the scan-
ning strategy is still very long since users tend to listen to
all BSs before choosing a relevant one.

Hearsay [14] is a non-visual multi-modal web
browser which has been developed at Stony Brook Uni-
versity (New York, USA) since 2004. It supports dif-
ferent input modes: voice, keyboard and tactile inter-
faces. Possible output modalities are audio, screen and
Braille. The browser provides many features: a segmen-
tation module which analyzes web page structure and lay-
out, a system of annotations which enables the addition of
alternative text for pictures and other content blocks, al-
gorithms detecting the changes between visited web pages,
a context analyzer which detects the main content and
identifies relevant information using hyperlinks. Experi-
ments show a significant gain of time in finding the main
content of a web page. In addition the system avoids
repeating static content such as menus. Globally, most
of these features made valuable contributions to improv-
ing user experience. Nevertheless, despite the positive
results, two aspects still require improvement in compar-
ison to visual reading. First, the page structure overview
is not complete because it focuses on main content; the el-
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ements are presented sequentially, making their browsing
long. Thus, this method does not provide real skimming
and scanning reading modes.

More and more work is now done using tactile strate-
gies [15, 16, 17]. [18] incorporate patterns into web pages,
thus enabling some elements and their relationships to be
felt by running fingers over them. Such transformed doc-
uments are then given to VIPs using special paper with
heat-sensitive ink. Putting the paper on a touch screen
makes it possible to interact with it and obtain the oral
transposition of a chosen web page section. Limitations
come from the need to use a special paper with a heater. A
similar concept is based on vibrotactile perception [19].
A special device captures contrast variations on the screen
as fingers browse the content on a tablet. These variations
are transformed into vibrations felt in a glove device worn
on the other hand.

In recent years, some work has been carried out using
Text-To-Speech tools within concurrent speech paradigm,
exploiting the fact that human ears may concentrate on a
specific audio source among many others [20]. The Cock-
tail Party Effect is a perfect example: even when many
people are speaking simultaneously, we may concentrate
our attention on one specific voice [21]. Variations in
spatial location [22], as well as speech parameters (syn-
chrony [23], frequencies [24]) may influence the percep-
tion of different voices. Using concurrent speech proved
to accelerate blind people’s scanning for relevant infor-
mation [25, 26].

To resume this section, two main approaches (content
summarization and concurrent speech synthesis) repre-
sent two interesting scanning strategies. However, they
are not sufficient in providing real skimming abilities.
The tag thunder concept combines both strategies: using
segmentation and extraction techniques to give a sum-
mary of the page content and using concurrent speech
synthesis to provide a quick overview.

3. Architecture
This Section presents our implementation of the tag thun-
der concept. It comprises three modules: web page seg-
mentation, key term extraction and key term vocalization
using concurrent speech synthesis.

3.1. Page segmentation

There exist numerous approaches to webpage segmenta-
tion [27, 28, 29, 30, 31]. We opted for the K-means++
algorithm [32, 33] 2. The choice for unsupervised clus-
tering algorithm was dictated, among other things, by the
lack of unified web page layout, and robustness of K-
Means algorithm in similar tasks [34]. It groups visible
HTML elements into a desired number of zones based

2http://scikit-learn.org/stable/modules/
clustering.html#k-means

on their Euclidian distance. To optimize convergence
and efficiency, each HTML element is enhanced with its
computed styles based on underlying CSS and Javascript
code [35]. Elements that are not part of the visual layout
are ignored.

For the purpose of our experiment, the enhanced HTML
is clustered into 5 zones. This choice of the number of
zones was made with the objective to avoid a working
memory overload, in accordance with the Miller’s Law [36].

3.2. Key terms extraction and weighting

Each zone is represented by its key terms in the tag thun-
der. In our current implementation, key terms are n-grams
of different lengths with a maximum order of 6.

For each n-gram, we compute tf � idf [37] (term fre-
quency – inverse document frequency). Tf is the fre-
quency of a given term in a zone. The idf is computed
using a corpus C containing 953 551 articles of the "Le
Monde" newspaper dating from 1987 to 2006. Similar
to [38], our solution couples tf � idf metric with addi-
tional parameters. We use Formula (1) to compute the
final score for each key term.

Score = tf(term, zone) · idf(term,C) ·
nX

i=1

�(ci) (1)

where tf(term, zone) is the frequency of the term
within its zone, idf(term,C) is the number of documents
in our corpus C containing the term. �(ci) is the weight
for a characteristic ci such as font weight, size, variant,
style, etc. � values were assigned empirically and reflect
the visual perception of a given element. �(ci) values
range from 0.5 to 5.

For the purpose of our experiment, each zone is rep-
resented by one key term only.

3.3. Concurrent speech vocalization

This module generates the audio signal from a given key
term and its zone properties. Based on [21, 23, 24], spe-
cific voice, volume, prosody, pitch, speech rate and syn-
chronization characteristics are combined to build an au-
dio track for a given key term.

Our synthesis module uses the Kali TTS [39] tool,
developed at the University of Caen Normandie by the
CRISCO laboratory. Kali supports speech rate accelera-
tion without loss in intelligibility and sound quality, which
is a very important feature in non-visual web browsing.

To vocalize the key terms, we use several cocktail
party effect metaphors. Thus, we consider each zone as a
discussion group in a cocktail party. Each metaphor pro-
vides rules which assign repetition frequency (Figure 4),
volume (Figure 5) and a spot in a 2D audio space (Fig-
ure 6) to each key term. Vocalization of all the key terms
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with their specific parameters produces the final tag thun-
der.

3.3.1. Repetition frequency

Metaphor 1: the larger the group talking about a topic,
the more often related terms emerge.
Rule 1: vocalized key terms are played in a loop. Zone
size influences repetition frequency within the loop.

Figure 4: Repetition frequency metaphor

For each key term, the silence between two repeti-
tions in the loop is proportional to the relative size of its
zone. The larger the zone, the shorter the silence. In our
experiment, silence duration has been empirically set be-
tween 0.5 second and 5 seconds.

3.3.2. Volume

Metaphor 2.a (distinctiveness): the more a voice in a
group stands out, the easier it is to detect its source.
Metaphor 2.b (relevance): the more the words are re-
peated in a group, the more relevant they are.
Rule 2: volume is determined by zone contrast and key
terms frequency in the zone.

Figure 5: Volume metaphor

For each zone, contrast is computed based on the dif-
ference between the background color and the text. Vol-
ume is set within a [min,max] interval, using the aver-
age of normalized contrast value and key term frequency.
In our experiment, TTS constraints and perceptive tests
led to setting the values for min and max to 4 and 8

points respectively, with each point representing 2 ampli-
tude tones.

3.3.3. Spatialization

Metaphor 3: sound spatialization helps to physically place
and distinguish several discussion groups.
Rule 3: zone coordinates influence the type of output
voice and 2D spatialization of vocalized key terms.

Figure 6: Sound spatialization metaphor

Voices are equally distributed in the 2D stereo space
depending on the zone’s centroid coordinates. In our ex-
periment, sounds originate from 5 sources (i.e. 5 corre-
sponding zones), as illustrated in Figure 6 .

4. Evaluation
We conducted an experiment in order to test the viability
of the tag thunder concept and the quality of our imple-
mentation. In this Section, we present the experimental
setting and the results.

4.1. Experimental setting

Our goal is to evaluate the system’s capacity to provide
fast skimming reading strategies. Here we present the re-
sults of the first experiment with sighted participants. The
goal of this experiment is two-fold: to evaluate the rele-
vance of the extracted key terms and to test the efficiency
of tag thunder concept as a skimming strategy.

The experiment unfolds as follows. A participant sees
a tag cloud followed by a web page, 15 seconds each. The
page may or may not be the corresponding web page. The
participant is asked whether the tag cloud corresponds to
the displayed page.Possible answers are: definitely yes,
probably yes, probably no, definitely no. Another partic-
ipant is presented with the same data, but in the form of
a tag thunder instead of the tag cloud and is asked to an-
swer the same question. The experiment modalities were
as follows:

4



(a) Tag Cloud and Tag Thunder output

(b) Webpage with a question form

Figure 7: User evaluation: web-based interface

• 18 sighted participants, each with 16 different stim-
uli (8 tag clouds - 8 tag thunders);

• 24 web pages from various web sites were used
to generate a tag cloud and a tag thunder for each
page;

• 24 other web pages were selected to create stimuli
where the page and tags do not match;

Each couple (web page, tag set) was shown to 3 dif-
ferent participants; each participant evaluated an equal
number of correct (matching) and incorrect couples.

Participants took the test autonomously, with a super-
visor close by. The evaluation interface is shown in Fig-
ure 7.

4.2. Results

We present the evaluation results for Tag Clouds (TC)
and Tag Thunders (TT) separately, as well as the com-
bined overall results. We also separate the analysis of the
correct (matching) and incorrect pages.

Figure 8 shows the dispersion of the total of 288 an-
swers. It seems more difficult for participants to defi-
nitely validate a correct page than to definitely reject an
incorrect page.

4.2.1. Agreement

We split the analysis of agreement statistics into three
interpretations: 4-var with four different answers; 3-
var where ’probably yes’ and ’probably no’ are com-
bined into ’not sure’; and 2-var where the answers ’def-
initely yes’ and ’probably yes’ are combined into ’yes’
and ’probably no’ and ’definitely no’ into ’no’.

Figure 8: Dispersion of the 288 answers

Web page 4-var 3-var 2-var

TC Correct 12.8 20.8 70.8
Incorrect 75.0 75.0 91.7

TT Correct 20.8 33.3 75.0
Incorrect 66.6 66.6 95.8
all 43.8 48.96 83.3

Table 1: Percentage of stimuli with the same answer

Table 1 presents the agreement statistics. The 2-var
interpretation shows a very high agreement rate when the
incorrect page was shown, for both TT and TC. The 3-
var interpretation shows differences only for the correct
pages, thus indicating that hesitations concerned correct
pages only. This might mean that key terms were not al-
ways well suited to represent their zones in case of correct
web pages, which created hesitation between ’probably
yes’ and ’yes’ TTs tend to have a better agreement than
TCs. Our hypothesis is that, in our experiment, textual
key terms in a TC were displayed with fewer typographic
effects whereas key terms in TTs had a full set of audio
(or ’typophonic’) effects described above. In general, the
modality of the stimuli (TT vs TC) does not seem to in-
fluence the agreement rate between users.

4.2.2. Precision and Recall

Precision and recall are computed on the 2-var interpre-
tation. Table 2 presents the results. There is a significant
difference in the perception of TCs or TTs between cases
where the page was the correct or incorrect one. For the
correct pages, the precision is very high, which means
that the participants manage to associate a given page to
a TT/TC. On the contrary, the recall is somewhat lower:
as discussed before, users find it difficult to validate a cor-
rect page. This suggests that a number of correct pages
were labeled as incorrect, which in turn might suggest the
insufficiency of the TT/TC representation in these cases.
This is especially apparent for tag thunders: 31% of cor-
rect pages were labeled as incorrect. Again, these results
suggest that the extraction module needs further improve-
ment.

Overall, participants found the exercise difficult but
made few mistakes. In general, the results of TTs are
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Format TagCloud TagThunder

Web page Correct Incor. Correct Incor.

Precision 0.96 0.81 0.98 0.76

Recall 0.78 0.97 0.69 0.98

F-score 0.86 0.89 0.81 0.86

Accuracy 0.875 0.84

Table 2: 2-var results: precision, recall and F-score

comparable in the overall accuracy with the results of the
TCs. We can conclude that the tag thunder concept is
valid and that certain limitations originate from the in-
ternal implementation of each module. We discuss these
limitations in the following Section.

5. Discussion and future work
The first objective of this work was to implement the con-
cept of tag thunders. Evaluation results demonstrate the
viability of this concept. However, each module requires
separate thorough evaluation.

5.1. Page segmentation

According to evaluation results, most errors come from
pages where the number of distinct informational sec-
tions is larger than the default number of expected zones
(5 in this experiment). In this case, the obtained zones
contain multiple sections of content handling distinct sub-
jects. Selected key terms therefore do not fully represent
that zone as a whole, rather one of the zone sections.

In the future work, we consider two potential improve-
ments of our segmentation module. The first one mixes
DOM based and image based approaches to page seg-
mentation. The second one uses the Gestalt theory [40]
to simulate the similarity, proximity and complexity prin-
ciples.

5.2. Key term extraction

One of the main issues with key terms extraction was the
maximum size of the n-gram order, which we fixed to 6.
As a result we do not always obtain coherent phrases:
abrupt endings, missing beginnings, etc. At the same
time augmenting n-gram order would lead to longer key
terms which might affect the user’s ability to comprehend
and retain the information contained in these n-grams.

As already mentioned, another issue was the complex
multi-section structure of certain zones which does not al-
low to extract one key term that would represent the zone.
One possible solution is to extract several short key terms,
one per zone section, and join them into one compound
key term. Some zones, like menus and footers, usually

contain list items, making it difficult to extract one key
term per zone. A solution is, again, to produce a key
term which would either contain several elements (sev-
eral menu items) or a meta key term, for example ’navi-
gation menu’, which would summarize the content.

Finally, several issues are related to the corpus used
to compute idf . In this implementation, it was composed
of news articles, produced between 1986 and 2006. One
way to extend the coverage of the corpus is to acquire
new vocabulary dynamically.

5.3. Vocalization

The evaluation results indicate that our audio representa-
tions in a form of tag thunders were comparable to their
visual counterparts in clarity and intelligibility (accuracy
values of 0.875 vs. 0.84). However, some users indi-
cated a somewhat artificial sound of the generated tag
thunders. More experiments with different sound settings
and spatialization modes are in process. Binaural record-
ing techniques may be used to render spatial variations in
tag thunders with simple stereo headsets. Since the Kali
TTS is not compatible with markup languages such as
VoiceXML and SSML, our solution needs to integrate a
compatible TTS so that we can use industry standards.

More experiments using different prosodic strategies
will need to be made in order to determine which combi-
nation of sound effects give a user the best representation
of the typography and page layout.

6. Conclusion
In this article, we proposed a strategy to facilitate skim-
ming of web pages in non-visual environments. Our so-
lution, which we call tag thunder, involves several pro-
cessing steps: segmentation of a web page into zones,
extraction of key terms from each zone and finally, vo-
calization of the key terms in a tag thunder. Evaluation
results show that participants were able to measure the
correspondence between a tag thunder and a web page.

The next step is to find the best compromise between
the number of zones and key terms and the perceptive
capacity of users. We intend to evaluate our concept with
VIPs and use their feedback to direct our future work.

Our final objective is to integrate human computer in-
teraction into our system, specifically for in-page navi-
gation: once a zone is selected, we want to be able to
’navigate’ to and explore that zone. In that case, headsets
with sensors may enable interactions with movements of
the head. Combining our approach with vibro-tactile de-
vices would lead to multi-modal systems which facilitate
access to web content in non-visual situations.
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8. Website
Tag thunder generator: https://tagthunder.greyc.
fr/demo/
Experiment (French version): https://tagthunder.
greyc.fr/demotest
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Abstract
The Spoken Wikipedia project unites volunteer readers
of encyclopedic entries. Their recordings make encyclo-
pedic knowledge accessible to persons who are unable
to read (out of alexia, visual impairment, or because their
sight is currently occupied, e. g. while driving). However,
on Wikipedia, recordings are available as raw audio files
that can only be consumed linearly, without the possibil-
ity for targeted navigation or search. We present a reading
application which uses an alignment between the record-
ing, text and article structure and which allows to navi-
gate spoken articles, through a graphical or voice-based
user interface (or a combination thereof). We present the
results of a usability study in which we compare the two
interaction modalities. We find that both types of interac-
tion enable users to navigate articles and to find specific
information much more quickly compared to a sequential
presentation of the full article. In particular when the VUI
is not restricted by speech recognition and understanding
issues, this interface is on par with the graphical interface
and thus a real option for browsing the Wikipedia without
the need for vision or reading.
Index Terms: accessibility, eyes-free interaction, voice
user interface, Wikipedia, hyperlistening

1. Introduction
Accessibility on the web is primarily established through
valid and semantically meaningful markup that can be
rendered by web agents regardless of the presentation for-
mat. An auditory rendition of the web is available to per-
sons who cannot read with screen readers which provide
spoken access and rely on text-to-speech and speech syn-
thesis. One of the problems of general text-to-speech is
the broad variety of text that it has to deal with, whereas
domain-restricted technology can perform better.

For Wikipedia, one of the 10 most heavily accessed
websites on the web1, there is a specific webservice (the
Pediaphon2 [1]) which offers to read out encyclopedic
articles, without requiring any screen-reading software.
However, while both the quality of speech synthesis it-
self (i.e., the process of producing artificial speech sound)
and of text-to-speech technology (the process of inferring

1http://www.alexa.com/topsites
2www.pediaphon.org

how some text should be spoken, e.g. wrt. abbrevia-
tions, phrasing, intonation, etc.) have advanced consid-
erably in the past years [2], the quality of artificial speech
still lacks compared to natural speech, even for read-out
text [3]. Text-to-speech mostly performs sentence-by-
sentence and hence is unable to adequately cover dis-
course and information structure (with some notable ex-
ceptions, e.g. [4]). Humans in contrast, do very well at
presenting the information structure and this is crucial for
understanding with little effort [5].

The Spoken Wikipedia3 is a project in which volun-
teers read out articles from Wikipedia to provide high-
quality aural access to Wikipedia for people who cannot
read. Roughly a thousand articles for each of English,
German and Dutch are available, each totalling around
300 hours of speech (with smaller amounts in another 25
languages). This data has recently been made accessible
by Köhn et al. [6]4 who automatically aligned the audio
recordings to their respective article texts using speech
recognition technology. Using these alignments, we are
able to relate what parts of the article are spoken at any
moment in the recordings. While the resource can be use-
ful for fostering speech technology research (e.g. training
acoustic models for open-source speech recognition), we
want to make the material more accessible for its origi-
nal purpose, to bring natural speech to those who prefer
speech over text but do not necessarily want to linearly
listen to full recordings.

2. The Written and Spoken Wikipedia
Wikipedia is accepted as the standard source for encyclo-
pedic knowledge on the web and comes in the form of
a strongly interlinked hypertext. Hypertext adds to tra-
ditional text the means for reading along a self-chosen
reading path (i.e., non-linearily), called hyperreading [7].
Wikipedia provides indices, extensive structural informa-
tion, and – most importantly – associative links to en-
able hyperreading. A common strategy in hyperreading
Wikipedia is leaping between sections of articles and be-
tween articles based on links or structure [7]. The recent
advent of find as you type in most browsers has made text

3http://en.wikipedia.org/wiki/Wikipedia:
WikiProject_Spoken_Wikipedia

4https://nats-www.informatik.uni-hamburg.de/SWC/
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Table 1: Comparative statistics of spoken and written ver-
sions of the German and English Wikipedia.

German English

Written # articles 1,950,022 5,174,458
— distinguished 6,283 29,189
average text size 5.3 kB 6.2 kB

Spoken # articles 916 1,344
— distinguished 314 213
average text size 25.8 kB 26.0 kB

Spoken articles 0.047 % 0.026 %
Coverage — distinguished 5.0 % 0.73 %

est. speech time 0.22 % 0.11 %

search a frequently used strategy to find information in
web pages, including for users with disabilities [8].

The Spoken Wikipedia has previously only been
available as a linear audio recording, omitting all the pos-
itive aspects of hypermedia and making navigation or
search impossible. Our software sets out to change this.

As also mentioned by Zhang [7], a disadvantage of
hyperreading is the possibility of getting lost due to the
flexibility of what to read next. Getting lost may be
of particular concern when hyperlistening, as speech is
such an inherently linear medium. Our experiments be-
low will hence focus on whether participants are able to
leap through speech without getting lost (too much), by
assessing whether they are successful in navigating to key
information in the article.

Wikipedia contains millions of articles on all sorts
of topics in the major languages, inviting the question
of whether the Spoken Wikipedia’s meager thousand ar-
ticles per language (at least for English, German and
Dutch) are of any practical relevance when browsing for
spoken information, or whether a screen reader is needed
in all practical use-cases anyway.

To address this concern, we compare the composition
of the written and spoken collections for German and En-
glish in Table 1. As can be seen in the table, both lan-
guage versions consist of several million articles each,
with a small proportion of distinguished articles.5 We es-
timate the average length of written articles on a random
sample of 1,000 articles for both languages (using their
size in bytes as a proxy for text length). We find that
articles selected for being spoken are (a) much longer
than average articles (4-5 times as long), and (b) more
often come from one of the distinguished article cate-
gories. In the German Wikipedia, some 5 % of distin-
guished articles have been read. Nevertheless, only a tiny
proportion of the full Wikipedia is available as a naturally
read version (0.11–0.22 %) and we estimate that a fully
read Wikipedia would have an audio duration of several

5English articles can be distinguished as either ‘good’ or ‘featured’,
where the corresponding German categories are ‘lesenswert’ (worth
reading) and ‘exzellent’.

decades – indicating the infeasibility of full coverage.
While high-quality synthetic voices can be rated as

more natural than amateur speech [9], naturalness ratings
have been shown to degrade when listening to synthe-
sized speech for an extended period [10], making the ad-
vantage of natural speech particularly relevant for long
and complex articles from the distinguished categories.

Distinguished articles also tend to be more stable
with fewer relevant changes, and hence their record-
ings remain up-to-date for longer. Thus, while we have
equipped our software with the ability to synthesize ar-
ticles on-demand, our experiments reported below focus
on natural speech and we focus on relatively long articles
of around one hour of speech.

3. Implementation
We first explain how we postprocess the SWC to re-align
text and HTML markup. We then describe the graphical
and voice user interfaces of our application.6

3.1. Data model

The Spoken Wikipedia Corpus [6] contains per-article
alignments of plain text to audio. Unfortunately, those
alignments do not take into account the article struc-
ture (in terms of the HTML DOM). In addition, the text
has partially been altered to ease alignment and does not
fully match the text (and other elements) contained in the
HTML version. We overcome this issue by using fuzzy
matching to produce a document that contains all of:

• the structural hierarchy of the article,
• the timing of all time-aligned words in the article,
• the sentence segmentation from the corpus, and
• the hyperlinks contained in the article.

This enables the application to
• leap (by sentence, paragraph, or section),
• identify links close to the current timing in the ar-

ticle audio (and follow these links), and
• identify timings for all words (for searching).

Both the time-alignment and matching occasionally go
astray or are missing some data. Our method is neverthe-
less robust to such errors and provides timings whenever
possible. We synthesize the table of contents based on
the observed article structure, as this is not spoken by the
readers; other material that is not spoken by readers (e.g.
tables, lists, bibliographies) remains left out.

3.2. GUI

The graphical user interface consists of multiple parts
that can each be hidden for experimentation. It is im-
plemented in JavaFX and depicted in Figure 1. It offers
multiple ways of accessing and leaping the structure of
the article, as well as access to close-by links.

6Available at http://github.com/hainoon/wikipediareader.
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Figure 1: The full application GUI, including for-
ward/backward jumps between articles (magenta), article
search (cyan) and within-article search (green), the re-
sponsive table of contents (blue), a responsive list of cur-
rently relevant links (red), some status information (yel-
low), sliders indicating the relative position in the arti-
cle (brown), buttons for standard audio navigation (for-
ward/backward/pause), for listening to the table of con-
tents, and for voice-based interaction (purple), and finally
buttons to navigate the article structure: by chapter, para-
graph, sentence, or jumping ahead/back by 10 seconds
per click (black). In the experiments, only parts of the
interface are available to users.

3.3. VUI
The voice user interface for navigating spoken articles
consists of speech activation, recognition and rule-based
language understanding with the aim of offering similar
functionality as the graphical interface.

The user presses and holds down the only button
in the interface to activate speech recognition. When
the button is released, we decode the recording using
Google’s freely available Speech API [11]7.

Language understanding makes use all returned (n-
best) hypotheses using a hierarchy of patterns. For ro-
bustness, patterns only need to match parts of what was
spoken, allowing the user the freedom to add material
such as “show me” or “now, go to”. The hierarchy of
rules is important as multiple rules may match a given in-
put. N-best results are useful to deal with Google’s vari-
ability in returning numbers (and other material). Users
may say (variations of) the following:

• “[show me the] [table of] contents”,
• “next/previous chapter/section/paragraph/sentence”,
• “[go back to the] beginning of the chapter/section/

paragraph/sentence” (or simply “repeat”),
• “[go to] chapter/section/subsection N”,
• “section name” to go to the named section,
• “article name” to follow a link or search an article.
Our language understanding (as well as other parts of

the software) currently work for English and German and
would be easy to port to other languages.

7https://cloud.google.com/speech/

Figure 2: Setup of the user study: the experiment partic-
ipant (right side) and the experimenter/wizard (left side)
are separated by a dividing wall.

4. User Study
We conducted a user study to gain insight into the pre-
ferred modality for interaction, to see whether targeted
navigation works as expected, and to learn about the over-
all usability of our software. For our experiment we dis-
abled the search and link-following options in order to
force users to stay within the article and to focus on struc-
tural navigation within the article.

Participants were given a choice of two articles so as
to increase interest in the article in question. Participants
where first allowed 2 minutes of ‘free browsing’ in the
article. Afterwards, they were asked to use targeted nav-
igation to answer three factual questions about the article
in question. The facts were positioned anywhere in the
article and sometimes required some combination (such
as aggregation of denominations for the full proportion of
religious affiliation). We compare three conditions:

GUI Users interacted using the graphical user inter-
face as described in Subsection 3.2 above.

VUI Users interacted by speaking voice commands to
the system described in Subsection 3.3. They were given
a schema for possible commands.

Wizard-control As in the the VUI setting, users in-
teracted by speaking, but were instructed to use com-
mands as they saw fit for the task (lead to believe that this
was a ‘better’ system). In this condition, the experimenter
followed the Wizard of Oz paradigm and navigated the
article according to how the speech interface should act
absent of recognition (and ensuing understanding) errors.

12 participants (normally sighted, not regular TTS or
screen reader users) took part in the study. Each partici-
pant used the system in all three conditions and we bal-
anced for ordering effects. The first 6 participants were
allowed no more than 2 minutes for each question, the
remaining 6 participants were allowed a total of 15 min-
utes for the questions with gentle reminders to move on
after 5 minutes per question. As participants were given a
free choice of 2 articles for each condition, we could not
balance the usage of every article.

In all conditions, users wore a headset to listen to the
recording. The headset’s microphone was used only in
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Figure 3: Proportion of questions answered after 6/
15 minutes for the experimental conditions and a non-
interactive baseline.

−−

−

+

++

6 min 15 min all

 GUI  VUI  WOZ

Figure 4: Average user ratings of overall interaction qual-
ity for the interaction conditions.

the VUI condition, whereas the wizard directly heard the
speaker and performed commands using the GUI from a
separate computer. See Figure 2 for a picture of the setup.

We asked the participants to fill out a questionnaire
after the initial ’free browsing’ and after targeted naviga-
tion for each interaction condition.

5. Results
We analyze our user study with respect to the participant
answers to the given questions, their ratings in the ques-
tionnaire and the logged interaction behaviour. Given the
low number of participants and the free choice of the read
article, we do not expect results to be significant; they are,
however, clearly indicative of general tendencies.

5.1. User Success
Figure 3 shows the proportion of (fully or partially) cor-
rect answers under the three experimental conditions for
the first group (2 minutes per question, 6 in total) and sec-
ond group (15 minutes). We add a baseline condition in
which the user would not be able to navigate (and hence
only be able to give answers that have occurred after a
maximum of 6 and 15 minutes, respectively). As can be
seen, targeted navigation greatly improves over linear lis-
tening. We find that voice-based navigation profits from
longer interactions, then reaching results on par with the
GUI. We want to add that a few questions were never an-
swered correctly because the information was very hard
to find given just structural navigation.

5.2. User Feedback
Figure 4 shows the overall interaction quality as reported
in the questionnaires. All versions are rated as ‘usable’
with a slight tendency towards spoken interaction (possi-
bly because there is no modality change between output

and input as commented by one user). Users tend to rate
better when they had more time to interact, indicating that
only 2 minutes per question result in stress, whereas 5
minutes are sufficient. Stress could be lower in the WOZ
condition in which interaction was more successful.

Users often commented that they would have liked to
search by keywords, a functionality that we had excluded
from the experiment. We believe that voice-based inter-
action will further improve when search is included.

5.3. User Behaviour
All participants interacted heavily (hyperlistened) in all
conditions rather than listen linearly. In particular, they
(a) navigate to sections, (b) skip ahead one section,
paragraph or sentence, (c) go back one sentence when
they notice that they found the desired information, or
(d) pause playback. The GUI condition also shows inter-
esting use of skipping words (presumably to save time),
and in voice-based interactions users often call the table
of contents (before then calling for a section). Unfortu-
nately, we did not record statistics of whether participants
prefer to call sections by name or number.

Users often pressed the push-to-talk button too late
(and/or released it too early) which hindered recogni-
tion. This could easily be solved by voice activity de-
tection. Likewise, while speech recognition worked well
for some, VUI performance was greatly restricted by er-
rors. This as well could be solved by better technology.

6. Summary and Conclusions
We have described a system for aural access to Wikipedia
articles: spoken articles can be navigated via their struc-
ture, or searched by keywords and links can be followed
to voice-browse the full Wikipedia (with articles synthe-
sized if not available in a naturally spoken version). Our
software enables hyperlistening, i.e. making use of the
crucial hypertextuality of modern encyclopaedia usage
without the need for reading.

We find that users are able to navigate to information
in articles much quicker than if they had to listen linearly,
and their usage patterns as well as comments indicate that
they easily stay on top of things even without feedback
about the current position in the article.

Both the graphical as well as the voice-based mode of
interaction work well, at least when speech recognition
error is low and enough time is available. This indicates
that hyperlistening fits well with voice-based navigation
and can hence be useful for persons without vision avail-
able for browsing.

Finally, while our interfaces enable browsing natu-
rally read articles, the full Wikipedia experience includes
user participation such as adding links and contents [7],
or commenting on the ‘talk’ pages. Thus, ours are just
initial steps towards a full eyes-free and speech-only ac-
cess to Wikipedia.
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Abstract
Animations of sign language can increase the accessibility of
information for people who are deaf or hard of hearing (DHH),
but prior work has demonstrated that accurate non-manual ex-
pressions (NMEs), consisting of face and head movements, are
necessary to produce linguistically accurate animations that are
easy to understand. When synthesizing animation, given a se-
quence of signs performed on the hands (and their timing), we
must select an NME performance. Given a corpus of facial
motion-capture recordings of ASL sentences with annotation
of the timing of signs in the recording, we investigate meth-
ods (based on word count and on delexicalized sign timing) for
selecting the best NME recoding to use as a basis for synthe-
sizing a novel animation. By comparing recordings selected
using these methods to a gold-standard recording, we identify
the top-performing exemplar selection method for several NME
categories.
Index Terms: American Sign Language, non-manual expres-
sions, exemplar selection, animation synthesis

1. Introduction
Being able to access information sources online has become
necessary for employment, engaging in commerce, accessing
government services, and in various other contexts in modern
society. However, the majority of information content on the
web is in the form of written-language text. There are many in-
dividuals who have difficulty reading text information sources
online, including those with low literacy.

What may be less obvious is that even websites without any
audio content present accessibility challenges for people who
are deaf or hard of hearing (DHH). Due to a variety of factors,
e.g., early language exposure or educational background, many
DHH users have lower levels of written language literacy. In
the U.S. context, standardized educational testing of secondary
school graduates (i.e., students age 18+) has indicated that the
majority of DHH graduates have English reading levels at the
fourth grade or below [1], which would correspond to age 10
U.S. students. Although some DHH individuals may have dif-
ficulty reading written English, many have strong fluency in
American Sign Language (ASL).

While presenting videos of ASL on websites is a simple
solution, it can be difficult to update and maintain information
content in the form of video. Therefore, technology to auto-
mate the creation of ASL content (in the form of animation)
can make it easier and more cost-effective for companies and

organizations to provide ASL content on their websites, as dis-
cussed in [2].

This paper focuses on methods for generating non-manual
expressions (NMEs), i.e. face and head movements, for ASL
animation. One method for producing linguistically accurate
and natural NMEs is to select a pre-existing recording of a hu-
man ASL signer as a basis for the animation, as discussed in [3].
A challenge is selecting which recording in a corpus is the most
suitable to serve as the basis for the face and head movements of
the animated character, given that a sentence with specific lexi-
cal items (and their timings) must be synthesized. In this paper,
we define four methods of considering the manual sign similar-
ity between pairs of recordings, and we conduct an evaluation
of how effective each technique is for identifying an exemplar
human recording that could serve as a basis for synthesizing
NMEs for ASL animations.

1.1. Background on American Sign Language and NMEs

As background, this section briefly summarizes ASL linguis-
tics, with a focus on the use of non-manual expressions (NMEs)
in the language. Researchers estimate that there are over a half-
million people in the U.S. who use ASL as a primary means of
communication [4]. As discussed above, many users of ASL
are not fluent in written English; the two languages are linguis-
tically distinct, with differences in word order, linguistic struc-
ture, and vocabulary. Generally speaking, movements of the
hands and arms are used to indicate lexical items (ASL “man-
ual signs”), but a complete production of ASL consists of much
more than this, including head movement, facial expressions,
eye-gaze, and torso movements, all of which can convey lin-
guistic information. These additional channels of performance
are commonly referred to as NMEs.

NMEs can convey a wide variety of information, includ-
ing emotional connotation, variations in lexical meaning, or
prosodic information. In this work, we focus on Syntactic
NMEs, which are used to convey syntactic information about
sentence structure. These Syntactic NMEs generally consist of
movements of the upper face and movements of the head, and
they are performed in parallel with phrases containing man-
ual signs. Syntactic NMEs conveying essential grammatical
information about individual words or about entire phrases or
clauses [5].

In this paper, we examine five common Syntactic NMEs:

• Negative: The signer shakes his head left and right to
indicate negated meaning (generally with some eyebrow
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furrowing). For instance, the addition of a Negative
NME during the verb phrase “EAT APPLE” in the ASL
sentence “TEACHER EAT APPLE” negates the mean-
ing of the clause so that it means “The teacher is not
eating the apple.” There is a manual sign “NOT” which
can optionally be inserted before the verb phrase: While
the manual sign is optional, the NME is required.

• Topic: The signer raises his eyebrows and tilts his head
backward during a clause-initial phrase that should be
interpreted as a topic. For instance, a Topic NME
would occur during “APPLE” in the sentence “APPLE
TEACHER EAT,” which translates to English as “As for
the apple, the teacher is eating it.”

• Rhetorical: The signer raises his eyebrows and tilts his
head backward and to the side to indicate a rhetorical
question. ASL Rhetoricals are immediately answered by
signer. For instance, “TEACHER BUY WHAT APPLE”
with Rhetorical NME during “WHAT” translates to En-
glish as “What is the teacher buying? An apple.”

• Yes-No Question: The signer raises his eyebrows while
tilting the head forward to indicate that the sentence is
a yes-or-no question. For instance, the introduction of a
Yes-No Question NME during the ASL declarative sen-
tence “TEACHER EAT APPLE” (English translation:
“The teacher is eating an apple.”) creates a polar ques-
tion: “Is the teacher eating an apple?”

• WH Question: The signer furrows his eyebrows and
tilts his head forward during a sentence to indicate an
interrogative question, typically with a “WH” word such
as what, who, where, when, how, which, etc. For ex-
ample, this NME would occur during the ASL sentence
“TEACHER EAT WHAT,” which translates to English
as “What is the teacher eating?”

1.2. Prior Work on NME Animation Synthesis

As discussed in Section 1, posting videos of human signers is
not a viable method for providing ASL content on websites.
If information must be frequently updated, then re-recording a
video of a human signer would be prohibitively expensive; fur-
thermore, a video-based approach would not enable real-time
generation of content from a user query. For this reason, “syn-
thesis” software is needed that can convert from a script of an
ASL sentence into a full animation of a virtual human perform-
ing ASL. This script of the sentence could be generated by a
knowledgeable human author or by machine translation soft-
ware (as the state-of-the-art of machine translation tools for
ASL improve in the future). Given the sequence of words in
the sentence, the synthesis software must plan the movements
of the virtual human character so that the resulting animation is
linguistically accurate, understandable, and acceptable by DHH
users.

Many researchers have investigated the design of sign lan-
guage synthesis systems, including research that has specif-
ically focused on the generation of non-manual expressions
[6, 7, 8, 9, 10]. Traditionally, researchers select a single record-
ing of how a non-manual expression is performed, and they trig-
ger this movement in parallel to the movements of the virtual
human’s hands.

In prior work, we have investigated data-driven methods for
synthesizing the NMEs of the virtual human. Specifically, our
prior work has made use of a small corpus of recordings of a
female native signer performing ASL sentences with NMEs.

This corpus is relatively small in size, and it has been divided
into sub-corpora of sentence recordings for different categories
of NMEs (Negation, Rhetorical, Topic, WH Question, Yes-No
Question). See Table 1. (We note that sign language corpora
are generally small in size, given the resource-intensive nature
of obtaining these recordings and the annotation of manual-sign
and NME information for individual frames of video.) This
corpus was recorded and annotated at Boston University, as
described in [3, 11]. The annotations include the timing and
identity of manual signs and NMEs, and the videos have been
processed by computer vision software [12] to create streams
of MPEG4 Facial Action Parameters, which are numerical rep-
resentations of the movements of various key points on the
face [13].

Table 1: NME corpus characteristics, including the duration of
each recoding, in video frames and number of words.

NME Category
(Number of Recordings)

Video Frames
min - max (mean)

Num. of Signs
min - max (mean)

Negation (55) 10 - 76 (38.1) 2 - 7 (3.56)
Rhetorical (13) 11 - 46 (28.3) 1 - 4 (3.0)
Topic (96) 5 - 54 (15.5) 1 - 4 (1.43)
WH Question (14) 15 - 69 (31.2) 1 - 5 (2.2)
Yes-No Ques. (21) 9 - 78 (34.6) 2 - 6 (3.6)

Given this resource, our prior work has examined two pos-
sible methods for generating animations:

• We have used multidimensional dynamic time warping
(DTW) on the MPEG4 FAP values to calculate pair-
wise similarity between all of the recordings in each
sub-corpus, and we calculated the centroid recording in
each set, with the minimum pairwise distance to all other
members. Assuming that this recording was “most typ-
ical” of that category of NME, we used that recording
as the basis for synthesizing animations of novel sen-
tences [3].

• We subsequently investigated the use of a generative
model of time-series data (Continuous Profile Models) to
calculate an underlying “latent-trace” of a set of multiple
recordings [11]. We used this latent-trace technique to
intelligently “average” across multiple examples of each
NME.

A common processing step that is necessary before using
either of these two approaches listed above is that we must iden-
tify a set of recordings that will serve as the basis for producing
a new animation. In prior work, we took the simplistic route
of using all of the recordings in our corpus that included the
specific category of NME (e.g. Topic) as the “basis set” for cal-
culating our centroid or our latent-trace NME. However, some
of those recordings may not have served as good examples of
how our virtual human should move, perhaps due to differences
between the sentence structure of the corpus recordings and the
structure of the sentence we need to synthesize. The premise of
this paper is that the selection of a basis set could be determined
in a more sophisticated and discerning manner than simply us-
ing every recording of that NME category.

1.3. Input to NME Animation Synthesis

To better define the specific task that is the focus of this paper,
we list the information and resources that are available during
the generation of an ASL NME performance for an animation:
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• We assume that the sequence of lexical items has already
been determined for the sentence that must be generated.
In addition to the identity of each word, we know the
timing of when the lexical items begin and end (based
partially on the timing information for each sign in the
lexicon of our animation system).

• We assume that we already know which spans of lexical
items in the sentence need to have an NME performed
in parallel. For instance, given an ASL sentence “OLD
BOOK I LIKE,” we have already selected that a Topic
NME should occur during the words “OLD BOOK.” In
fact, we presented initial research on how to perform this
step of the process at SLPAT 2015 [14].

• Finally, we have our corpus of ASL sentence recordings,
consisting of videos, the MPEG4 FAP values, and lin-
guistic annotation of manual signs and NMEs (including
the video frame numbers when each begins and ends).

2. Basis-Set Selection Techniques
Our task is to determine which of the recordings in our corpus
should be included in the basis set for synthesizing an NME
performance. Ideally, we would like to select recordings that
are similar to the sentence we seek to synthesize. Given the few
inputs to our task (listed in the previous section), there are lim-
itations on the types of information that we may consider when
defining strategies for selecting items for the basis set: namely,
the identity and timing of the manual signs or NMEs. The in-
tuition behind the basis-set selection strategies investigated in
this paper is that we may prefer to select sentences with a sim-
ilar number of words, a similar duration, or similarities in the
patterns of the timing of the manual signs. Our selection metric
should have the following properties:

1. Two phrases with a similar number of words or with a
similar overall time duration should be scored as being
similar.

2. Two phrases in which the beginning and ending timings
of the words they contain align closely should be scored
as similar.

3. Given the small size of our corpus, considering lexically
specific information is impractical. Thus, we will con-
sider the timing of manual signs in a “delexicalized”
manner; that is, we will replace the sign labels such as
“OLD” or “BOOK” in our corpus with a single token,
e.g., “SIGN.” This, we will not consider the labels of the
specific words/glosses – only their timing.

4. A natural unit of time granularity for our analysis is the
time duration of a single frame of video, since this is
the basis for the linguistic annotation of word and NME
timing for the recordings.

2.1. Comparing Temporal Language Signals

Prior to inventing a new metric for scoring the word-timing
similarity of recordings of ASL sentences, we first examined
the computational linguistic and automatic speech recognition
(ASR) literature to examine the methods used to compare lan-
guage signals with temporal information, specifically those
techniques that have been used to evaluate the output of ASR
systems against gold-standard annotations of the speech tran-
script. While there are a variety of metrics used to compare
string output, e.g. [15], most techniques are focused on penaliz-
ing incorrect string transcription of the speech audio, and thus,

scoring techniques rarely incorporate temporal alignment into
the score. In our case, we are considering delexicalized word
timing similarity.

Researchers focused on ASR temporal alignment accuracy
have proposed a variety of metrics, e.g. average word bound-
ary shift [16], and researchers studying speaker-segmentation
in recordings of meetings have proposed metrics such as Diari-
sation Error Rate [17]. However, in both cases, these metrics
assume that there will be some word label or speaker-ID corre-
spondences across the two time-annotated transcriptions. Since,
for our task, we are focused on delexicalized timing similarity,
these previously invented metrics are not well-suited.

As discussed in the next section, some of our proposed
metrics make use of Inside-Outside-Beginning (IOB) labelling.
For this reason, we also considered comparison metrics in the
named entity detection and information extraction literature.
While the output of many systems consists of IOB labelling of
the tokens in a string, the traditional evaluation metrics in this
field are based on per-token precision, recall, or F-score [18].
Such metrics are ill-suited to evaluating fine-grained IOB sim-
ilarity at the video-frame level, as in our situation. Some au-
thors propose metrics to support evaluation of partial-matches
(in which a system’s named-entity tagging partially overlaps
with the true gold-standard labeling) [19]. However, even these
metrics do not consider the temporal dimension at a fine-enough
granularity for our task.

2.2. Techniques Examined in This Paper

Since we did not find a suitable pre-existing metric for compar-
ison of the delexicalized timing similarity of the manual com-
ponent of two ASL sentences, we invented four sets of basis-set
selection approaches (and a simplistic baseline), which we will
investigate and compare in this paper:

• Baseline Method. This simplistic method for defining
the basis set was used in our prior work [3]: We filter
the corpus, leaving only those recordings containing the
specific category of NME that we seek to generate (e.g.,
Topic). For this baseline approach (and in all of the other
approaches listed below), we select and extract the por-
tion of each recording that coincides with the span of
time when the NME is occurring in that sentence (based
on the linguistic annotation). Thus, if a Topic NME oc-
curs during the first two words of some recording, then
we extract the portion of the recording corresponding to
this period of time for inclusion in the basis set.

• Word Count. This technique is based upon the intu-
ition that an NME that occurs during a portion of a sen-
tence with a large number of words may differ from an
NME that occurs during a portion of a sentence contain-
ing few words. For instance, facial expressions with pe-
riodic movements, such as the head shaking that occurs
during Negation, may consist of a larger number of in-
dividual movements when it occurs during a longer verb
phrase. In this technique, we first filter for only those
recordings that contain the category of NME we need
to generate (e.g., Negation), as in the baseline approach
above. Next, we count how many words co-occur with
the NME in each recording, and we select items for the
basis set that have a similar number of words within the
timespan of the NME. Thus, if we must generate an ASL
sentence with a Negation during a verb phrase consisting
of five words, then we would prefer to select recordings
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from our corpus that contain Negation performances dur-
ing an identical (or similar) number of words.

• Frame Count. This technique is similar to the above,
except we use the time duration of the NME (measured
according to the number of video frames) as the similar-
ity metric. This, if we needed to generate an ASL ani-
mation with a Topic facial expression that must last for
25 frames, then we would prefer to select Topic NME
recordings of a similar duration from our corpus for in-
clusion in the basis set. (Our video recordings have a
frame-rate of 30 frames per second.)

• Levenshtein IOB. In this technique, we pre-process
each of the sentence recordings to generate a string
consisting of the letters “I,” “O,” or “B,” representing
Inside, Outside, or Beginning, in the following man-
ner: For each frame of video, we add one character
to the string, based on whether this frame of video
is the Beginning of a manual sign (the single video
frame where this word begins), Inside (during) a man-
ual sign, or Outside of a manual sign (i.e. during a pe-
riod of time in-between signs or before/after all signs
in the recording). Thus, an ASL sentence recording
of duration 20 frames containing the words “BOOK”
(frame 3 to 8) and “LOST” (frame 10 to 15) appears
as: OOBIIIIIOBIIIIIOOOOO. We select all of the
recordings in the corpus that contain the same category
of NME (e.g., Topic) as the one we need to generate, and
we focus on the IOB substring that corresponds to the
time duration of each NME. To calculate similarity be-
tween pairs of substrings, we calculate the Levenshtein
distance (with equal penalty for insertion, deletion, and
substitution, with normalization based on the length of
the shorter substring). The intuition behind this tech-
nique is that it may capture the temporal structure of a
recording in a delexicalized manner such that we would
prefer to include recordings in the basis set that consist
of NME recordings with a similar number of words with
similar word durations and timing.

• Bigram IOB. This technique uses a similar IOB string
representation as above. After extracting the substrings
that correspond to all examples of the category of NME
we must generate (e.g. Rhetorical), then we count all
character bigrams in each IOB substring. These counts
are stored in a vector corresponding to each string; to
calculate the similarity between a pair of recordings, we
use the cosine similarity between their vectors. The in-
tuition behind this approach is that it may capture some
information about both word count (based on the number
of n-grams containing the “B” character), and it would
also indicate overall time duration (with longer record-
ings having higher counts in the vector cells).

3. Evaluation of Selection Techniques
Given the inputs described in section 1.3, a good basis-set selec-
tion technique would identify a subset of ASL recordings in our
corpus that contain similar face and head movements to what
a human would perform for the ASL sentence that we seek to
synthesize.

3.1. Scoring Metric Used in This Evaluation

In prior work presented at SLPAT 2015, we demonstrated that
multidimensional dynamic time warping (DTW) operating in

the space of MPEG4 Facial Action Parameters can assign sim-
ilarity scores to pairs of ASL NME recordings that correlate
with the judgements of native ASL signers [20], and we defined
a refined version of this scoring algorithm in [3]. This scor-
ing algorithm provides a numerical score of the similarity in the
face and head movements (specifically the eyebrows and head
displacement/orientation) between any pair of ASL recordings.
In the evaluation presented below, we use this multidimensional
DTW scoring algorithm to evaluate how well each of the selec-
tion techniques is able to chose a basis set with recordings that
are similar to gold-standard human performances.

3.2. Evaluation Methodology

We compared the efficacy of each of the five techniques listed
in section 2.2, for each of the categories or NME in our corpus
(Negation, Rhetorical, Topic, WH Question, Yes-No Question),
using a leave-one-out evaluation paradigm, described below. To
explain the process more clearly, we will discuss, by way of ex-
ample, how the process occurs for the WH Question recordings.

1. We extracted a set of all the recordings in our corpus
for this category of NME (e.g., there were 14 recordings
of WH Question in our corpus). We iteratively held-
out each of the recordings in this set (i.e., we repeated
this process for all 14 items in the set of WH Question
recordings), and we consider the held-out recording to
be a gold-standard of how a human should move his face
and head when performing the NME for the given se-
quence (and timing) of manual signs in this sentence.
The remaining 13 recordings are used as the superset
from which the basis set must be drawn, for this held-
out recording.

2. For each of the basis-set selection techniques, we iden-
tify a subset of the recordings that are predicted to yield
NME movements that are similar to the gold-standard
held-out recording. We use each of the five selection
techniques to identify a (potentially) different basis set.

(a) For the baseline method, this is trivial: In the case
of WH Question, we would simply use all 13 of
our non-held-out recordings in the superset in or-
der to form our basis set.

(b) For the remaining four selection techniques, the
similarity scoring methods defined in section 2.2
enable us to assign a score to each of the 13
WH Question recordings. For each of the selec-
tion techniques, we select the top 5 most similar
recordings to form a basis set. Thus, each of the
four selection techniques will be used to produce
its own basis set (with cardinality 5), and each ba-
sis set may have different membership, as deter-
mined by that selection technique.

3. To evaluate the quality of the basis set chosen by each
selection technique, we must compare how well the face
and head movements of each of the recordings in the
set matches the face and head movements of the held-
out recording (considered as a gold standard). Using the
DTW metric from [3] mentioned above, we calculate the
distance between each of the recordings in the basis set
and the held-out gold-standard recording. To produce a
single score for each basis set, the individual distance-
to-gold-standard scores for the members of the set are
averaged to produce a single score.
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Figure 1: Average DTW distance between basis set members
and gold-standard sentences, for each NME category, for each
selection technique. Note that smaller bars are better.

4. Discussion of Results
As shown in Figure 1, at the end of the evaluation process, for
each NME category, for each of the five selection techniques,
we have a single score that represents how well that selection
technique was able to identify a basis set of recordings from our
corpus that were similar to human performance of that NME for
the held-out gold-standard sentences.

For three of the NME categories (Negative, Topic, and Yes-
No Question), the best performing selection technique was Lev-
enshtein IOB. For the Rhetorical and WH Question categories,
the best performing selection technique was Frame Count. (For
WH Question, the performance of all of the selection algorithms
was quite close, with Levenshtein IOB in second place.)

Our corpus contains relatively few recordings of Rhetori-
cal (13) and WH Question (14), and due to the nature of how
these NMEs are used in ASL, many of these recording examples
occur during phrases consisting of a single word (e.g., often a

single WH-word). We speculate that the difference in efficacy
of the selection techniques for these two categories may relate
to the relatively low cardinality of examples in our dataset and
the relatively short duration of these NMEs.

No selection algorithm obtained the best (lowest) distance
scores across all five categories of NME, and in principle, it
is reasonable that a different selection technique could be best
suited to each of the NME categories. This could be due to the
way in which the lexical timing of manual signs may influence
how that particular NME is performed by ASL signers.

5. Conclusions
This paper has investigated techniques for selecting a subset of
recordings from a corpus that can be used as a basis for synthe-
sizing the Syntactic NMEs for a sentence to be generated, based
only on information about the delexicalized manual sign timing
of the sentence. By identifying a set of similar recordings for
inclusion in this basis set, various approaches can be used to
select a single recording [11] or to identify a latent-trace of the
set [11], in order to plan the face and head movements of a vir-
tual human in the ASL animation. Ultimately, the goal of this
work is to improve the state of the art of sign language anima-
tion synthesis technologies, especially since prior studies have
demonstrated that the understandability of such animations is
affected by the quality of the synthesized NMEs. Such technol-
ogy has potential to make it easier for organizations to provide
sign language content on websites in a manner that is more effi-
cient and easier to maintain, which may increase the prevalence
of such content online.

In future work, we plan to evaluate the efficacy of these
basis-set selection techniques within the context of a full ani-
mation synthesis pipeline. By performing final animation pro-
duction step, we can generate stimuli for display in user-based
evaluation studies, in which native ASL signers could view an-
imations generated using these selection algorithms as an inter-
mediate pipeline stage. In this way, we can determine the degree
to which the differences in efficacy identified in this study may
influence DHH users’ perception of the linguistic accuracy and
understandability of the resulting animations.

In this study, we found that the Levenshtein IOB metric was
most effective at selecting basis set recordings for three of the
five NME categories in this study, and the number of recordings
in our corpus for the remaining two categories (Rhetorical and
WH Question) was relatively small. In future work, we are in-
terested in acquiring additional ASL recordings of these NMEs
from multiple signers so that we may repeat this analysis on a
larger testing set.
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Abstract
Recent advancements in the accuracy of Automated Speech
Recognition (ASR) technologies have made them a potential
candidate for the task of captioning. However, the presence of
errors in the output may present challenges in their use in a fully
automatic system. In this research, we are looking more closely
into the impact of different inaccurate transcriptions from the
ASR system on the understandability of captions for Deaf or
Hard-of-Hearing (DHH) individuals. Through a user study with
30 DHH users, we studied the effect of the presence of an error
in a text on its understandability for DHH users. We also inves-
tigated different prediction models to capture this relation ac-
curately. Among other models, our random forest based model
provided the best mean accuracy of 62.04% on the task. Fur-
ther, we plan to improve this model with more data and use it
to advance our investigation on ASR technologies to improve
ASR based captioning for DHH users.
Index Terms: Accessibility for People who are Deaf or Hard-
of-Hearing; Captioning System; Speech Recognition; Human
Computer Interaction; Computer Linguistics

1. Introduction
Captions provide a way to represent aural information in visual
text for people who are Deaf or Hard-of-Hearing (DHH). Today
there are more than 360 million people worldwide with hearing
loss [1] and they use services such as captioning to get access
to information existing in the form of speech such as informa-
tion from mainstream classes, meetings, and live events. Sev-
eral methods have been explored in providing such a service; a
popular alternative includes the use of captionist to transcribe
audio information to text using a keyboard, with the captions
displayed on a screen for those in attendance. Captioning ser-
vices produce a digital textual output which can be processed
and represented in various forms easily, or it can be stored as a
transcript, making it useful in various scenarios such as class-
rooms and meetings, where it could be reviewed later.

Over the past few decades, automated speech recognition
(ASR) technologies have seen major progress in their accuracy
and speed. With its increasing maturity, ASR technologies are
now being used commercially for many consumer applications.
Due to their cheap and scalable ability (compared to other cap-
tioning alternatives) to generate real-time text from live audio
or recordings, ASR systems have a potential for the task of cap-
tioning. Researchers have begun to investigate the suitability
of ASR to automate or semi-automate the process of captioning
with the use of ASR systems [2, 3, 4, 5] in various application
settings.

Despite the growing use of ASR systems, accurate, large-
vocabulary, continuous speech recognition is still considered an
unsolved problem; the performance of ASR system is not on par
with humans [6], who currently provide most caption text for
DHH users. Due to unpredictable ambiguity in human speech
and ever existing noise, ASR systems often make errors, and it
is likely that this technology will continue to be imperfect in the
near future as well. Researchers have also argued that ASR gen-
erated errors on captions are more comprehension-demanding
than human produced errors [7, 8]. While all users of ASR
technology must cope with errors in the output, there is poten-
tial that this issue has greater significance when focusing on
applications for DHH users. Past research has indicated that
the majority of deaf high school graduates in the U.S. have an
English literacy level at the fourth grade or below [9], and ap-
proximately 20% leave school with a reading level at or below
second-grade [10]. This presents a huge challenge for caption
acceptance by DHH individuals given the error-probable output
from ASR.

For a successful use of an ASR system in captioning, errors
that affect comprehension of a caption for DHH users might
need to be appropriately reduced or at least sufficiently modu-
lated. It may be the case that some classes of errors from an
ASR system are especially problematic for DHH users (per-
haps based on their unique English literacy profile), and other
classes of errors are less problematic. Understanding this trade-
off could make way for designing an adaptive ASR system op-
timized for the task of captioning, specifically for DHH users.

In this paper, we present a method to study the effect of dif-
ferent ASR-generated errors on the understandability of a text
for DHH users. For our task, we formulate a user study with
DHH users who are given imperfect English texts (containing
ASR errors) and asked to answer some questions based on the
information from the text. With the data collected from the user
study, we model the relationship between ASR errors and the
impact it has on the understandability of a text for DHH users.
We also discuss the possible application of this model in de-
signing a custom loss function that could be utilized during the
decision making process of the ASR to produce better outputs
for captioning for DHH users.

2. Background: N-best list Rescoring
Technique

In an ASR system, the function of the decoder is to find the most
likely word sequence given the sequence of audio features. Al-
though decoders are designed primarily to find a single solution,
in practice, it is relatively simple to generate not just the most
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Transcription WER loss Avg. Understandability loss
Reference The meeting today has been cancelled

and is scheduled for next Thursday.
NA NA

ASR Hypothesis 1 The meet in today has been cancelled an
is scheduled for next Thursday.

25% 8.425%

ASR Hypothesis 2 The meeting today has been capital and
is skidoo for next Thursday.

16.67% 46.425%

Table 1: Example shows how Understandability loss penalizes texts containing different errors as compared to WER loss. Higher loss
value indicates worse output for the metric.

likely hypothesis but the n-best set of hypotheses. Therefore, in
most ASR systems, along with the most likely word sequence,
a list of n-best hypotheses can also be obtained as output. Other
compact forms of representation of this n-best hypotheses list
are also commonly used such as a word lattice representation
[11] or a confusion network [12].

These representations have been popular especially because
they provide a reduced search-space (out of all possible word
sequence) that can be further decoded, with more flexibility,
to improve the ASR output. This post processing technique of
“rescoring” or “reranking” candidate hypotheses also allows for
general-purpose hypothesis to be tuned in a domain-specific or
user specific way without having to design the whole ASR en-
gine to do so [13]. Furthermore, the n-best hypotheses gener-
ated as an output from the ASR system can be processed with
complete independence from the ASR system; thus, it can be
treated as a separate stage in an ASR pipeline.

Researchers [14, 15, 16, 17, 18, 19] have utilized various
rescoring techniques to select the best hypothesis from an ASR
n-best hypotheses. In [19], Stockle et al. presented an N-best
list rescoring algorithm to improve upon the shortcomings of
the ASR decoding process to produce more accurate output.
A standard Hidden Markov Model (HMM) based ASR system
uses Maximum A Posteriori (MAP) technique as a decoding
criterion. The problem with the application of the MAP ap-
proach to speech recognition is that it is sub-optimal with re-
spect to minimizing the number of word errors in the system
output. Instead, it has been shown to minimize sentence error
rate which is only loosely linked to the recognition Word Error
Rate (WER) [19]. Subsequently, Stolcke et al. [19] proposed
a rescoring algorithm that explicitly minimizes expected word
error for recognition hypotheses. In [20] researchers provided a
Decision Theoretic perspective to the work from [19] as a Bayes
decision rule under word error loss, as shown in Equation (1).

�(X) = argmin
W2W

X

W

0 2W

WER(W, �(X))P (W
0
|X). (1)

Goel et al. [20] proposed a modified loss function (as shown
in Equation (2)) to be minimized during the modified decod-
ing process by adding additional degree of freedom which can
be “tuned” appropriately during training. Additionally, [20]
also make simplifying assumptions to compute P (W |X) with
joint distribution P (X, W ) which are accessible from the n-
best lists.

l(W, �(X)) = [WER(W, �(X))]x. (2)

This framework suggested by [20] provides a flexible way
to incorporate a custom loss function in the decoding process
of ASR, and this approach is how we intend to adapt ASR in

our work. This Minimum Bayes Risk (MBR) based decod-
ing has been shown to provide statistically significant improve-
ments in recognition task compared to MAP based decoding as
it explicitly incorporates task performance criterion to the de-
coding process of ASR. Successes of hypotheses scoring sys-
tems like ROVER [14] (and its variants) has been credited to
MBR based decoding to directly improve WER. Several re-
search groups have investigated this method of decoding in re-
cent years [21, 22, 23].

3. Design & Implementation

The approaches discussed above utilize an n-best list rescoring
technique to improve the WER of an ASR system. We propose
to compare the efficacy of these rescoring approaches for op-
timizing ASR for real-time captioning, a task for which there
may be better metrics than WER. We propose to learn a cus-
tom loss function (based on the analysis of data from experi-
ments with DHH users) to optimize the comprehensibility of
ASR output for DHH users. Unlike WER, our loss function
may provide a better measure of text understandability for this
group of users. Table (1) shows a comparative example of our
loss function (based on the data and modeling presented later
in Section 3.2 of the paper) against the traditional WER loss.
In the example, we can see how our Understandability model
prefers Hypothesis 1 over Hypothesis 2 as compared to WER
metric which does the opposite.

This paper, in general, is about creating this loss function
using a prediction model which captures the relation between
different types of error and their impact on the understandability
of sentence for DHH users. As a final step (in the future), we
will be looking to see if this loss function can be incorporated
into the decision-making process of an ASR system, following
the framework provided by [20], such that the ASR can produce
output that is optimized to be more comprehensive for our user
group.

3.1. User Study

We performed a user study with a goal of understanding how
ASR errors affect DHH users’ performance on a comprehen-
sion task, given that a text contains some ASR generated er-
rors. In this study, users were presented with imperfect English
text passages (containing artificially inserted errors, based on
real ASR errors for that passage) and were asked to answer
questions that required understanding the information content
of those passages. Based on the answers, we collected Com-
prehension Scores for the respective questions, which we sub-
sequently used to model the relationship between errors in the
text and its comprehensibility.
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3.1.1. Error Categories used in Designing Stimuli

To guide our creation of stimuli for the user study, we estab-
lished a hierarchical classification of various sub-types of ASR
errors (based on a time-alignment between the ASR output and
the gold-standard). Broadly, ASR errors can be categorized into
three types: substitution, deletion and insertion errors. Further,
we divided substitution errors into four types: one to one substi-
tution, one to many substitution, many to one substitution and
many to many substitution. One to one substitution refers to
the errors when one word is substituted by the other. One to
many substitution errors are the error due to substitution of one
word by many (for e.g., undistinguished substituted by on dis-
tinguished). Similarly, many to one errors are the errors when
many words are substituted by a single word. Many to many
errors corresponds to a multi-word span of text in the refer-
ence transcript with inaccurate recognition such that none of
the word boundaries within the span align with those within the
corresponding span of ASR output. We further subcategorized
one to one substitution errors into three types namely, morpho-
logically similar substitution, phonetically similar substitution
and remaining other types of substitution errors. The morpho-
logically similar errors are the errors where the actual word is
substituted by another word with an inflectional or derivational
morphological relationship to the first (for e.g., developed sub-
stituted by develop). The phonetically similar errors are the
errors due to the substitution of a word by another word with
similar phoneme representation; for example, the words table
(T EY B AH L) and stable (S T EY B AH L) have a very close
(� 60% match) phoneme structure so they are considered as a
phone neighbor of each other.

These categories of different error types were meant to be
a coarse categorization of the errors and was used as a basis for
ensuring that the stimuli presented in our user study contained
a good mixture of different error types.

3.1.2. Study Resources

For the user study, we created a dataset of 20 passages (average
length 117 words), with each passage containing three sen-
tences marked as our Region Of Interest (ROI). For example,
the text below shows a sample text passage used in the study
with three bold sentences representing the three ROIs in the text.

People who study film music often complain about the lack

of recognition their field receives. The study of film music is

an interdisciplinary field, falling in between cinema studies

and musicology. This is one of the reasons why it receives so
little attention. For example, when film music scholars, who
often do not have music-degree credentials on par with the
pure musicologists, write about film soundtracks, their articles
are often ignored by the musicologists. Conversely, when the

work of film music scholars touches on the visual aspects of

film, the cinema studies people often treat it as the work of

amateurs. So with the members of the two fields most closely
related to it ignoring it, it is easy to understand why members
of the film music field feel a degree of frustration.

The questions for passages was designed in such a way
that each question was based on information from only one of
the ROI sentences in that passage. In total, each passage had
three text-explicit questions. As described in [9], text-explicit
questions measure exact recall from the text without requiring
any inferential use of information from the reader’s memory.

The text below shows an example of a question asked
during the user study. The question is based on the reading text
shown above as an example. This question, in particular, is
based on information from the first ROI sentence of the reading
text.

A. According to the passage, what do film music students often
complain about:

⇤ that their field doesn’t receive the recognition they
deserve.
⇤ people who study film music are not recognized.
⇤ film music study is not up-to the par.
⇤ extra attention that their field receives.

For each ROI sentence, an average of 8 different varia-
tions were generated where each variation was produced by
inserting at most one category of ASR error into the ROI
sentence. To produce each variation of the ROI, we began
with a perfect text and inserted one of those errors. The text
below shows an example of an ROI sentence without any errors:

Conversely, when the work of film music scholars touches on
the visual aspects of film, the cinema studies people often treat
it as the work of amateurs.

We produced different variations of this ROI text by adding
ASR generated errors into the sentence. ASR generated errors
were collected by creating an audio recording of a male En-
glish speaker performing each ROI sentence (multiple times)
and running it against the ASR system. Since our goal was to
obtain output containing a variety of errors, we used the CMU
Sphinx system with its distributed trained models [24]. Some
variations of the ROI text are shown below:

• Conversely, when the work of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often cricket as the work of amateurs.

• Conversely, when the working of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often treat it as the work of amateurs.

• Conversely, when the work of film music scholars
touches on the region aspects of film, the cinema stud-
ies people often treat it as the work of amateurs.

• Conversely, when the work of film music scholars
touches on the visual aspects of film, the cinema stud-
ies people often treat it has worked amateurs.

This procedure ensured that the artificially created varia-
tions of the ROI sentence agreed with the actual imperfect out-
put produced by an ASR system.

3.1.3. Participants

Participants for the study were recruited from among associate
degree students at the National Technical Institute for the Deaf
(NTID) at Rochester Institute of Technology (RIT). We col-
lected data from 30 DHH participants (age distribution with
µ=22.63 and �=2.63), 12 men and 18 women, where 26 par-
ticipants self-identified as Deaf and 4 of participants as Hard-
of-Hearing.
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3.1.4. Procedure

Each participant was given 10 different comprehension pas-
sages to read, each containing three multiple choice questions
that needed to be answered in a time period of 70 minutes. A
pilot test with a DHH member of our research team helped us to
determine an appropriate number of question items for the 70-
minute experiment. The comprehension passages given to the
participants were generated by replacing each ROI sentence by
its erroneous counterpart (one of the variations). The number of
errors of each category that were displayed to each participant
was balanced among all participants in the study to ensure that
individual human differences in task performance did not dis-
proportionately affect the scores for any one category of error.
Further, each ROI appeared several times throughout the entire
study in a form without any errors inserted so that we could
obtain baseline measurements for the difficulty of the particular
comprehension question, to enable subsequent normalization of
the collected scores. Scores of answers from each question were
binary with correct answer receiving the Comprehension Score
of 1 and incorrect answer receiving the score of 0.

3.2. Model Fitting

The data collected from the user study enabled us to determine
whether there is a relation between the presence of an error with
specific linguistic characteristics (see Table (2)) in a sentence
and its impact on the comprehension of the sentence (whether
or not participants answered the question referring to the sen-
tence). However, the relation between the presence of an error
and its impact on sentence is not straightforward. A wide va-
riety of complex semantic factors can lead some ASR errors to
be more confusing than others for end-users who are reading
the text. For our automatic captioning application, we are in-
terested in focusing on a subset of those aspects of a text that
could be automatically computed, using modern computational
linguistic software.

Table 2: List of features extracted from the error regions in the
hypothesized text for analysis.

Feature Description Type
1. WordLength Average length of the word in the region. Numeric
2. SaliencyIndex Average TF-IDF score of the word in the region

representing the importance of the word.
Numeric

3. POSTag Priority order based Part of Speech tag assigned
to the region. The order is described in Sec-
tion(3.2.2).

Categorical

4. SyllableLength Average number of syllables of the word in the
region.

Numeric

5. SentimentOrientation Indicates whether the region alters the original
sentiment (broadly, positive or negative) of the
reference word(s) or not.

Categorical

6. ContentOrFunction Whether the region contains content word or
not.

Categorical

3.2.1. Feature Identification

After consulting prior research on reading skills of deaf users
[10, 25], we identified a list of 6 features of each error that we
would examine as part of our analysis. The features are summa-
rized in Table 2. Some features (for e.g. row 5 in Table (2)) are
computationally more expensive than others. Since this model
will eventually be used to produce a loss function to optimize
a real-time ASR system, using these computationally expensive
features may not be efficient. But, we considered these features
in our preliminary analysis to understand their significance in
the model.

3.2.2. Feature Extraction

Along with the Comprehension Scores for the text in the pas-
sages used in the study, we also extracted some linguistic fea-
tures, summarized in Table (2). These features were obtained
from the imperfect ROI texts in the passage which the users
referred to when answering the questions provided during the
study.

Each variation of ROI text contained at most one type of
error which was created by replacing the actual (reference)
word(s) from the error-free ROI text with a different (hypothe-
sized) word(s). Thus, the first step of the feature extraction pro-
cess involved alignment of error-free ROI text with its erroneous
variation to identify the reference word(s) and the hypothesized
word(s) pair. As the ROI texts were not time-aligned and there
were few errors in each ROI text, we could utilize Levenshtein
distance based word alignment technique to align the texts. We
utilized CELEX2 [26] as our lexical database for syllable infor-
mation for calculating the SyllableLength feature. A frequency-
based Part-of-Speech (POS) tagger, Unigram Tagger [27], was
utilized for POS tagging of words. The tagger was modified to
output one of 11 different POS tags (in priority order: noun,
verb, pronoun, adverb, adjective, preposition, conjunction, in-
terjection, determiner, number and others) to an input word.
The ContentOrFunction feature was calculated with the help of
POS tag(s) of the word (a word is labeled as a Content word if it
is a Noun, Verb, Adverb, or Adjective). The SaliencyIndex fea-
ture represented the general importance of the word and was es-
timated by calculating Term Frequency-Inverse Document Fre-
quency (TF-IDF) score of a word(s). Scikit-learn’s [28] Tfid-
fVectorizer was used as our TF-IDF Scorer, and it was trained
with a portion of dataset (N=18 books) from Project Gutenberg
[29] corpus and Web Text corpus from NLTK [27]. TextBlob
[30] library for python was used to compute the SentimentOri-
entation feature.

For each type of error, the features were extracted from the
reference word (the actual word), except for the insertion error
type (an insertion error doesn’t have a reference word as it is
produced due to an insertion of an extra word) whose features
were extracted from hypothesized word(s).

Figure 1: A plot showing the importance of each feature vari-
able in-terms of their contribution to model accuracy and impu-
rity.

3.2.3. Feature Selection

We utilized random forest to rank our 6 features and selected 3
features based on the measure of average accuracy decrease and
average impurity decrease in the model without each of these
features. As shown in Figure (1), features WordLength, Salien-
cyIndex and POSTag were among the best contributors to the
Gini impurity and the accuracy of the model.
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Evaluation Metrics
Models AUC Cutoff Accuracy F-measure Precision Recall Bal. Accuracy

Logit (M
l

) 0.496 0.539 0.618 0.754 0.618 0.968 0.498
Random Forest (M

rf

) 0.572 0.444 0.620 0.744 0.631 0.844 0.533
SVM (M

s

) 0.496 0.605 0.617 0.738 0.625 0.919 0.497

Table 3: Summary of the evaluation of each prediction model on our test dataset. Value on each metric represents the average perfor-
mance of the model in 5 different train and test partitions of our dataset.

3.2.4. Model Evaluation & Selection

We investigated three models for prediction and evaluated the
performance of each model for our task. Table (3) summaries
the result our evaluation. For the purpose, we selected 80%
of our total observation (N= 862, excluding the baseline mea-
surements) to train the model and used 20% of our remaining
observation of test the model. For each model, five-fold cross
validation with this 80/20 split was used to build each model,
and the performance scores reported in Table (3) are based on
the average of the models for each fold. We observed the per-
formance of Random Forest model (M

rf

) to be slightly better
than other models with accuracy of (µ = 62.04%, � = 4.41).

Figure 2: Example of Accuracy vs Cutoff graph for Random
Forest Model on a test dataset. The marker represented by the
red-cross represents the point of maximum accuracy at a cutoff
value of 0.31.

During the testing process, the cutoff probability for each
classification model, which was used to label output probability
to our binary class, was chosen as the mode of the accuracy vs
cutoff graph; the graph represented the accuracy of the model
considering different cutoff values. Figure (2) shows the accu-
racy vs cutoff curve of Random Forest model on a test dataset.

4. Discussion
While its performance is above chance, the Random Forest
model Accuracy results presented above are modest, but we
view these results as preliminary. This study was based on a
small amount of data (30 participants on 20 passages), and the
set of features explored was relatively small. We view this ef-
fort as an initial proof-of-concept of our ability to identify useful
features in a loss-function for predicting the comprehensibility
of a text for DHH users.

Obviously, if we are to make use of this loss function in
real-time captioning system, we would not know which words
are errors. Our intention is to use the confidence value of the
ASR system as a proxy for this information, and to use our loss-
function to guide the hypothesis selection. Specifically, the pre-
diction model (M

rf

) we built from the user study results will be
used in designing our loss function, as shown in Equation (3).

`(W, �(Y )) = �
⇣ X

fi=f(W,�(Y ))

M
rf

(f
i

)
⌘

(3)

where �(Y ) represents our decision rule that maps audio input
(Y ) to word sequence output (Ŵ ). We need a function f(R, H)
that returns set of features (listed is Table (2)) for each error type
in the hypothesis text (H) when compared to the reference text
(R).

This loss function looks to penalize the harsh errors that
have significant ‘predicted’ impact on output comprehension
(obtained from M

rf

) for DHH users.

5. Conclusion & Future Work
The work described in the paper has been concerned with the
development of a prediction model that represents the impact
of ASR errors present in the text on its comprehension, specifi-
cally for DHH users. Beyond our intended application for ASR,
we note that research on understanding the relationship between
text characteristics and comprehensibility for DHH users may
have other applications, such as automatic text readability de-
tection software for these users. Further, we plan to extend our
user study and improve our prediction model with more data.
As we move on, we will look to investigate the Decision The-
oretic framework for n-best list rescoring proposed by [20] to
incorporate our custom loss function in to the ASR decoding
process.

In addition, we will look to contrast its performance with
other discriminative training techniques to optimize ASR com-
ponents with our loss function. We also intend to do experi-
mental analyses of the effectiveness of the final tool for DHH
users.
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Abstract
A conversational approach to spoken human-machine interac-
tion, the primary and most stable mode of interaction for many
people with cognitive impairments, can require proactive con-
trol of the interactive flow from the system side. While spoken
technology has primarily focused on unimodal spoken interrup-
tions to this end, we propose a multimodal embodied approach
with a virtual agent, incorporating an increasingly salient su-
perposition of gestural, facial and paraverbal cues, in order to
more gracefully signal turn taking. We implemented and eval-
uated this in a pilot study with five people with cognitive im-
pairments. We present initial statistical results and promising
insights from qualitative analysis which indicate that the basic
approach works.
Index Terms: human-computer interaction, virtual assistant,
interruption, turn taking, gesture, cognitive impairment

1. Introduction
Spoken human-machine interaction has become a widely
adopted paradigm in recent years. In addition to being a help-
ful technology to keep one’s hands free in a variety of every-
day contexts, spoken interaction also opens access to modern
technology as a whole for certain groups of people, specifically
those that cannot readily understand, learn, read, or manipulate
interfaces employing other modalities. While graphical inter-
faces with flat hierarchies counteract some of these usability
problems, the presentation and negotiation of information there
does not always correspond well to those in spoken human-
human interaction, which many of those people will be quite
familiar with. However, off-the-shelf spoken language technol-
ogy, which has become very good at recognizing words even
when uttered by new users and answering common sets of –
well-formed – questions, usually also lacks many of the aspects
of this human-human mode of interaction, namely its conver-
sational, incremental and reciprocal nature. Humans in interac-
tion constantly exchange back-channel information relating to
– possibly preliminary – evaluations of the unfolding stream of
information. By attending to the other party, a speaker is aware
of the back-channel feedback (paraverbal, facial, gestural) of a
listener and will incrementally and smoothly incorporate it into
their content selection and presentation. Likewise, the listener
can tell when and where the speaker encounters a problem, and
can intervene in a timely manner, if necessary. They might also
be aware of possible points of misunderstanding, and either ad-
dress them immediately – by barging in, often in a cooperative
fashion – or queue them for later implicit or explicit resolution.

To achieve these capabilities, one crucial function in dialog
systems is interrupting the user and taking the floor – but doing
so in a cooperative manner that is consistently acceptable for

users even over longer time spans and many repeated instances.
In the following sections, we will first provide an overview

of the theoretical and analytical background relating to multi-
modal turn management signals, and look at related work on
turn taking control in interactive systems. We will then present
the scenario and user groups for our pilot study, and present
the autonomous interruption controller that was run alongside
a Wizard-of-Oz controlled main dialogue. After a description
of the procedure and the interview structure for the assessment
of subjective ratings, we will present initial statistical data, fol-
lowed by a detailed analysis of one particularly informative in-
teraction fragment, before concluding our presentation.

2. Background and related work
The different manifestations of turn-keeping and turn-grabbing
signals were early described by Duncan and Fiske [1]; Bohle [2]
provides a comprehensive overview and discussion. Accord-
ing to the latter source, one single characteristic, unimodal sig-
nal generally constructs a clear meaning in these situations, but
the intensity can be increased by employing multimodal pre-
sentation. Addressing those behaviors in the listener role that
do not generally have the effect of signaling a desire to obtain
the floor, they list minimal acknowledgements, clarification re-
quests, other-completions, short paraphrase, and head gestures
– one should also add paraverbal back-channel feedback to the
list [3]. As for the floor-asserting behaviors, more specifically
floor grabs by the listener, they list head or gaze aversion from
the speaker, as well as the initiation of gesticulation. Kaartinen
[4] analyzed gestural behavior as turn-taking signals in news
interviews, noting the role of adaptation of gestures in forming
multifunctional constructs encompassing turn-taking informa-
tion; and particularly highlighting (quasi-)deictic handshapes,
first and foremost extended fingers.

The efficacy and acceptability of interruptive behavior on
the part of dialog systems has been well researched.

Ter Maat et al. [5] investigated the effect of interruptive turn
taking by an agent in a Wizard-of-Oz setup, comparing (uni-
modal spoken) early turn grabs, i.e. interruption-causing over-
laps, to turn taking immediately at and slightly after appropriate
points. They found that early barge-ins were perceived as more
assertive, but also as significantly more disagreeable, rude and
of lower conversational aptitude.

Cafaro et al. [6] examined ratings of simulated agent-agent
interactions with comparable interruption types, but addition-
ally manipulating the cooperativity of the interrupter’s content
selection strategy (e.g. elaboration vs. topic jump as a reply to a
question). Strategy changes towards cooperativity in particular
led to increased perceived friendliness and reduced dominance
– but less so that the selection of interruption type, corroborat-
ing the findings of ter Maat et al.
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In our own work with autonomous dialog systems for older
adults and people with cognitive impairments, we previously
found that the spoken, conversational, paradigm of task-related
interaction with a system transfers to both groups, both in terms
of feasibility and acceptance [7]. In those studies, we strictly let
the users control the pacing of the dialogue and the amount of
transferred content, while priming for specific information pre-
sentation only when subjects yielded their turns spontaneously.
While the performance and perception of the autonomous sys-
tem was comparable to an earlier Wizard-of-Oz prototype [8]
for most people, we found that a noticeable minority of par-
ticipants from both groups were prone to excessively verbose
or tangential presentation even after repeated instruction to the
contrary (cf. Fig. 1) – which caused ASR and NLU to drastically
decrease in performance, thus necessitating proactive, interrup-
tive, system-side floor governance.

3. Pilot study
Considering this requirement for proactive floor manage-
ment, and the aforementioned work on the reduced per-
ceived cooperativity caused by pure verbal barge-ins, we
constructed an autonomous prototype interruption controller
(flow controller) based on the research on the multi-
modal construction of turn-grabbing behavior. We employed
it in a pilot study with five participants with cognitive im-
pairments, engaging in a spoken human-agent interaction in
a Wizard-of-Oz-controlled discussion game. These sessions
were embedded in a larger study exploring the effects of agent
body language on the persuasiveness and reception of system-
generated argumentation for older adults as well as younger
controls (n=40 each; analysis in progress), for which younger
subjects with cognitive impairments were also recruited by our
corporate partner, the large health and social care provider
v. Bodelschwinghsche Stiftungen Bethel.

Since the participants with cognitive impairments were not
expected to be able to fill out the required 90+-DOF question-
naire for the experiment proper, the interruption condition was
piloted instead. Participants from all user groups were pre-
sented with the same scenario and task, described below.

3.1. Setup and participants

From the point of view of the participants, the setup consisted
of a 27” touch screen, a microphone and an eye tracker, as well
as cameras recording two angles (Fig. 2 depicts the view from
the rear camera). The screen was able to show the game scene,
showing the animated virtual agent, “Billie”, as well as lists rep-
resenting the game state. The agent was controlled by the AS-
APRealizer software for behavior realization [9]; text-to-speech
was provided by a CereVoice [10] component controlled by the
realizer, which was able to provide some realizations of paraver-
bal signals. A directional microphone and a low-cost eyetracker
were mounted below the screen. The system was primarily con-
trolled by a Wizard-of-Oz console that interacted with a compo-
nent managing the game state and graphical presentation. How-
ever, the agent’s nonverbal and paraverbal behavior was con-
trolled autonomously by the flow controller, described
below. This was contingent on the audio state as reported by
a simple audio level detector, which was in turn inhibited by
ongoing agent utterances (see Fig. 3 for an overview of compo-
nents). The eye tracker was, in this incarnation of the system,
employed as a source of data for qualitative analysis and as a
basic functionality test for our user groups, although incorpora-

Figure 2: Overview of the setup (as seen from the rear camera).
Touchscreen PC with eye tracker mounted below. High-fps face
camera recording from below the screen. The physical item list
and the items to allocate on it in preparation for the game are
visible on the desk. The microphone is occluded by the partici-
pant (anonymized). Start of interaction.

flow_controller ASAPRealizer

List manager

CereTTS

WOz Console

audio
level

Game Manager

?

set mode

inhibit

touch events
decisions

Figure 3: Overview of components. “Audio level” and “Flow
controller” constituted the autonomously acting subsystem.
Discourse progress and contents were controlled by the Wizard
(wearing headphones).

tion into the interruption controller is planned for the future.
Participants (n=5, 2 male, 3 female, ages 29–48) were re-

cruited from a care institution providing support to people with
cognitive impairments, both in communal and individual as-
sisted living arrangements. Exact clinical diagnoses were not
able to be divulged by the care providers. As with previous
experiments, we asked that only subjects be recruited whose ar-
ticulation was clear enough to be generally comprehensible by
untrained, unfamiliar listeners.

3.2. Interruption controller

Animations for signaling turn grabs were first recorded using
full-body motion capturing, then reduced to spinal and arm
movements and preprocessed to obtain a chainable, smooth
database for procedural animation. In lieu of a speech recog-
nizer’s voice activity detection module, a simple audio-level ac-
tivated trigger was implemented using pyaudio that reported du-
rations of ongoing and finished audio events. It was inhibited
by open agent utterances, effectively removing cross-talk at the
cost of ignoring overlapping speech. We were only interested in
the duration of the user turn proper, and surmised from previous
experiments that prolonged periods of overlap were unlikely to
be frequently caused by the user group.

The flow controller component, responsible for in-
terruption generation, was able to be configured in four modes
(0–3): modes 1, 2 and 3 started a slowly progressing three-state
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a1 AGNT Do you have another appointment?
SUBJ Yes. Then, I have yet another appointment ... on Friday

a2 AGNT So, on Friday, right? OK. At what time does it start?
SUBJ Right. Then I’ll pick 3 PM again,

a3 AGNT So, at 3 PM, right? So, at 3 [interrupt] Good.
SUBJ have ice cream. [hoarsely] Yah Yes.

a4 AGNT So, at that time, there is "Have ice cream", right? Okay. Then I’ll enter it as follows...
SUBJ Right.

c1 AGNT Then tell me the next appointment, please.
SUBJ I have uhm (-) today shopping *thr 3 PM 3 PM *appoin

c2 AGNT
SUBJ appointment with <Name> (.) and then I also(?) later go shopping later *thr 3 PM with <Name>

c3 AGNT
SUBJ (.) and (-) then I also go shopping (-) later

Figure 1: Transcripts of interaction segments with different interaction styles observed in previous studies with an autonomous pro-
totype system. The non-verbatim translation from German attempts to represent dysfluencies and errors intuitively. Top: older adult,
brief but casual style; bottom: person with noticeable cognitive impairment, verbose turns, exacerbated by dysfluent and unclear
articulation; this led to considerable ASR processing delays (the participant eventually entered the shopping appointment successfully).

Figure 4: Four stages of nonverbal interruptive behavior. From left to right: Idle; first signal (reached after about 4s, shown with mouth
half-open); second signal (reached after about 7s); final stage (held until user ends utterance or Wizard barges in).

cascade of interrupting behaviors (cf. Table 1), varying slightly
in surface form by mode, for all utterances above a threshold
duration (set to 2s+). Behaviors included hand raises (half-
open hand or pointing shape), gaze aversion, open mouth and
paraverbals (“ah” and throat clearing). For short utterances, the
agent would provide positive feedback by nodding. Mode 0 al-
lowed for a non-interrupting state: the agent would nod at the
defined transition points and then remain static in the idle posi-
tion for the remainder of the user’s turn.

3.3. Task and procedure

The task for the participants was a discussion game in the
“desert survival” scenario. The premise was that the agent and
the subject were stranded in a remote location, with their air-
plane destroyed and only a set of twelve items still intact. The
task of participants was to order them, ranked by their perceived
usefulness, and then engage in a discussion with the agent to
find a consensus order.

A brief principal instruction was provided by the experi-
menter, then the interaction started. The Wizard controlling the

agent would first greet the user and ask their name, then explain
all stages of the game. The users were then asked to rank the
list of items, for which we prepared a paper list with twelve
empty item slots, and paper slips corresponding to the items
to be placed on the list. All items were individually explained
to the user, as was the meaning of list items “high” or “low”
on the list to account for possible problems with abstract num-
bers. Subjects then had two minutes to decide on a preferred
ranking. The agent would enter “hidden” rankings on his list
on the screen. When the subject’s list had been finished, the
agent asked them to read them off in order. The agent entered
those rankings in the leftmost (user) list. Thereafter, the agent
“showed” its list – but instead silently generating a conflicting
ranking according to a pre-defined permutation scheme.

The subsequent crucial discussion phase started, the agent
presented the user’s ranking along with its own and a relative
statement (like: “You placed the Lighter on 1, I have it on 7.
So, you rated it as more important than I did. Could you explain
why you placed it there?”) At this point in the discussion, the
interruption controller, that was set to mode 0 (do not interrupt)
in all other contexts, was set based on the index of the currently
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Table 1: Interruption controller: modes and phases, with respective generated actions. Modes were set according to the index of
the discussed items (see text). Phases were successively entered during user turns that proceeded for long enough. *Note: all hand
positions other than the idle position were combined with a slight gaze aversion (constant angle).

Phase
Mode 0 1 2 3

– (short) nod nod nod nod
1 nod raise to mid*, index extended raise to mid*, mouth open raise to mid*, index ext’d, utter “ah”
2 nod raise to high*, mouth open raise to high*, mouth open raise to high*, mouth open
3 nod keep raising*, hand open, utter “ah” keep raising*, hand open, clear throat keep raising*, hand open, clear throat

Figure 5: Crashed in the taiga! Scene setup: left list: initial
user choice; right list: agent ‘choice’; center list: ranking made
by user after the exchange of arguments. In this instance, the
discussion has just taken place for the user’s third most impor-
tant item (“clothes”, highlighted), and the user just selected a
final slot for it, in this case following the agent’s suggestion.

discussed item (from first to twelfth: modes 0, 2, 0, 1, 2, 0, 1,
2, 3, 0, 2, 3). Therefore, at items 1, 3, 6, and 10 (a third of all
items), the system would remain in non-interrupting mode as a
reference for comparison.

After subjects presented their opinion about an item, the
agent would invariably utter an argument from a precompiled
list that contained one supportive and one dismissive argument
for each item, selected depending on relative ranking. Then,
the user was always given the choice to fix a position for the
item on the common, central, list. Selections in the lists could
be made either by speaking the rank number, or by touching
the corresponding field on the screen (cf. Fig. 5). When all 12
items had been discussed and agreed upon, the user could mod-
ify the list one final time if they so wished, after which thanks
and valedictions were presented by the agent, and the iteraction
was over.

After the experiments, a simplified structured interview was
conducted for each subject. A visual 5-point Likert rating aid
(definitely yes – ... – definitely no) was employed to gain quan-
tifiable ratings to ten questions, although the primary aim was
to gather comments and qualitative information. The questions
were (approximate correspondences in Simple English): Q1:
Did the game with Billie go well? Q2: Was Billie nice to you?
Q3: Did you understand what Billie said? Q4: Could Billie un-
derstand you as well? Q5: Did Billie listen when you wanted to
say something? Q6: Did you find the game easy enough? Q7:
Was the length of the game okay? Q8: Did you call the shots
in the game? Q9: Did Billie butt in or interrupt you? Q10:
Did you have fun playing the game? In particular, Q5 and Q9
were inserted as a pair of opposing valence, contingent on the
experimental manipulation and its effectiveness and perceived
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Figure 7: Length statistics for discussion turns for each partic-
ipant, non-interrupting (mode 0) vs. interrupting (mode 1–3)
conditions. (Participant 03 was in the audio-only interaction.)

intrusiveness. Subjects were also asked to report prior techni-
cal experience and answer the more general question “Do you
enjoy talking to other people?”.

3.4. Results and discussion

All five subjects were able to complete the whole task. Subject
2 mostly opted for the touch-based rank selection in the course
of the discussion, while the other participants interacted using
speech only. For subject 3, a technical problem led to the loss of
the video signal on their screen after the introductory explana-
tion; the subject accepted this silently and concentrated mostly
on her physical list from then on. Since the task was completed
successfully, we used this as an audio-only reference. The eye-
tracker only reliably worked for subjects 1 and 4, thus final anal-
ysis of the gaze behavior can only be made after video-based
annotation for the other subjects.

The scenario was not consistently conducive to long elabo-
rations by all users, although two participants did produce them.
While the sample size is much too small for robust statistical re-
sults, interesting trends can be gleaned from the graph in Fig. 7:
for subject 2 and 4, who produced the most elaborate argumen-
tations in the turn we focused on, a noticeable difference be-
tween the non-interrupting and interrupting items can be seen,
indicating that the interruption strategy might have had an ef-
fect. This was most valid for the first three or four items, where
all participants had a quite clear idea of their motivation to rank
the items highest (note that subject 4, during item 6, where
they were free to talk, just coughed, sighed and uttered “tough
question”, staring at the agent until the Wizard continued.) In
the videos, no clear, hard ‘breaking points’ can be observed in
any of these cases, indicating that the progressive nature of the
signal might have progressively steered them to a smooth turn
completion.
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01 SUBJ ja-aso meine überlegung war weil ö: (0.6) den ö: (0.4) ö:m (0.3)
yes-well my idea was since uh the uh uhm

SUBJ-gaze @GUI @Table @GUI
AGNT-gest | hold IDLE ----------------------------------------------------| raise to MID ---

02 SUBJ <<click>> der whiskey ja ess (.) essma so nich wichdich is ne den kam-man (0.8)
the whiskey well fir... firstly isn’t that important right you can

SUBJ-gaze FLICK@Agent @GUI @Agent @GUI 0.6s @Agent
AGNT-gest ---------------| hold MID -------------------------------| raise to HIGH, extend index

Img#1 Img#2 Img#3

03 SUBJ den |kamman weil wemman schmerzen hat oder so zum (0.85) <<click>> (-)
it you can since when you are in pain or something to

SUBJ-gaze @GUI @Agent @GUI
AGNT (ah)

ah

AGNT-gest ----| raise to APEX, open palm -----------------------| hold APEX ---------------

04 SUBJ brauchen aba-ansonsten (1.5)
use but otherwise

SUBJ-gaze @Table @Agent
AGNT bei mir is-der whiskey an stelle fünf

I’ve got the whiskey at position five

AGNT-gest | relax to IDLE -----------| hold IDLE ----------------------------------

Figure 6: Transcript and anonymized snapshots from an item argumentation by subject 1 (see 3.5 for discussion). Pause lengths in
parentheses, short pauses given as (.), (-) [11]. Times of the three frames indicated by Img#x, in blue.

We surmise that an attenuation effect contributed to an ob-
servably reduced verbosity in later items: participants appar-
ently ranked the most important and least important items with
a clear idea of their merits or downsides, with the rest of ranks
(around #7–#11) possibly filled rather indifferently with the un-
clear remainder.

The ratings of the interview questions relating to the exper-
imental manipulation were rated equally by all participants (Q5
was rated ”decidedly yes”, Q9 as ”decidedly no”). Agent nice-
ness and enjoyment of the game were likewise rated with the
most affirmative option by all subjects. Subject 2 noted in the
free-form interview comments that she noticed the agent’s ges-
tures but found them slightly odd; she thought the agent looked
like it “might want to say something”.

3.5. Qualitative analysis

Even for those participants where no noticeable effect on utter-
ance length could be observed, detailed analysis still indicates
that the agent behavior modulated the subject’s pacing and con-
tinued attention to the agent, indicating that timely and contin-
gent content presentation, as afforded by an autonomous dia-
logue system as opposed to WOz, could allow for a cooperative
takeover at these points.

Fig. 6 highlights one such situation. The participant is
mainly focused on the GUI part of the screen (the agent’s list)
and his paper list, but regularly checks back with the agent while
he is explaining his decision. The section highlighted in red
shows a typical fragment of interaction where the system man-
aged to capture the attention of the user. The user looks at the
agent during his utterance – the agent has already performed
the weakest interruption signal and is just about to generate the
second animation (raise hand further with index finger extended
and mouth slightly open). The user looks back to the left, but

his gaze returns to the agent after merely 0.6 seconds. He then
hestitates mid-sentence for 0.8 seconds, directing his attention
immediately at the agent.

We argue that the interruption subsystem managed to con-
struct a possible transition point here (which the Wizard did
however not utilize before the user resumed) – with the short
gaze shift to the lists either due to a delay in the user’s reac-
tion time, or else having seen the continuation of the signal in
peripheral vision.

4. Conclusions
Our preliminary results indicate that the nonverbal agent behav-
ior generated by the interruption controller did lead to grace-
ful (self-)interruption in some of our participants with cognitive
impairments, while others that did not noticeably vary in pre-
sentation length still reacted noticeably to the emitted signals.
As for the ratings of intrusiveness and cooperativity, none of
the participants judged this as interruptive behavior per se, and
agent ratings were all maximally favorable. The practical effi-
cacy of these interruption signals is certainly also dependent on
proper contextual content selection at the very time of a gener-
ated transition opportunity or floor yield – which was not trivial
to realize for the human Wizard. Depending on the scenario,
this could work better with a spoken dialog system, which we
will explore next. Another issue is the exact surface realization
of the signals of increasing intensity. While we hand-crafted our
signals based on literature on the topic, an evaluation of differ-
ent versions of the signals (possibly using crowdsourcing with
unimpaired users) could also be helpful.

Overall, we deem the further exploration of nonverbal con-
trol signals to govern the floor in conversational, spoken dialog
systems a promising endeavor.
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Abstract 
This paper demonstrates the feasibility of using a simple and 
robust automatic method based solely on acoustic features to 
identify Alzheimer’s disease (AD) with the objective of 
ultimately developing a low-cost home monitoring system for 
detecting early signs of AD. Different acoustic features, 
automatically extracted from speech recordings, are explored. 
Four different machine learning algorithms are used to 
calculate the classification accuracy between people with AD 
and a healthy control (HC) group. Feature selection and 
ranking is investigated resulting in increased accuracy and a 
decrease in the complexity of the method. Further 
improvements have been obtained by mitigating the effect of 
the background noise via pre-processing. Using 
DementiaBank data, we achieve a classification accuracy of 
94.7% with sensitivity and specificity levels at 97% and 91% 
respectively. This is an improvement on previous published 
results whilst being solely audio-based and not requiring 
speech recognition for automatic transcription.  
Index Terms: Dementia, feature extraction, feature selection 
procedure, de-noising, classification.        

1. Introduction 
Recent statistics show an increase of the elderly population 
around the world according to Alzheimer’s Disease 
International [1] and a relatively high percentage of those will 
go on to develop dementia [2], [3]. Dementia is used as an 
umbrella term to describe symptoms of brain disease 
damaging the cells and neuron synapses caused by e.g. 
Alzheimer’s disease. Dementia symptoms include cognitive 
decline (affecting amongst other things memory and the 
person’s speech and language), limited motor control, 
abnormal behavior, loss of memory and judgment, apathy and 
at a late stage losing the ability to speak [2].  

Currently, there is no powerful tool that gives a reliable 
diagnosis of dementia; rather, the patient has to go through a 
series of cognitive tests conducted by a professional 
neurologist for assessments. This process can be very 
challenging for the patient and involves a certain amount of 
anxiety and stress. Especially in the case of the early stage 
detection, complementary tests include the analysis of samples 
of cerebrospinal fluid taken from the brain and a magnetic 
resonance brain imaging test [4], [5]. Such methods are 
invasive, bring discomfort to the patients, are relatively costly 
and require a significant amount of effort and time.  

Finding lightweight, noninvasive diagnostic and/or 
screening tools, that can be used in the comfort of peoples’ 
homes and inform this process, is therefore of interest. This 

could be in the form of wearable sensors or incorporated in 
existing intelligent home technology. This paper describes a 
relatively simple audio-based tool for detecting biomarkers of 
dementia in a person’s speech. 

Changes in speech and language patterns offer valuable 
clues to the detection of dementia as the speech production 
process starts in the left hemisphere of the brain [6] and any 
decline in speech capabilities might indicate the presence of 
e.g. Alzheimer’s disease. Several studies investigated the use 
of speech-based features for the detection of dementia 
providing a noninvasive and inexpensive tool that does not 
require extensive infrastructure or the presence of medical 
equipment [7], [8]. Automated speech and language analysis 
methods are potentially powerful tools, especially when using 
machine learning algorithms capabilities to evaluate the 
features extracted from the speech. Many methods rely on 
relatively computationally heavy processing involving speech 
recognition and the use of natural language processing 
techniques to achieve some degree of speech understanding at 
the linguistic level [9]. This makes them unsuitable as low-
cost home-based solution and means they are expensive to 
port to new languages. The alternative solution presented in 
this paper investigates audio-only processing to address this 
challenge. 

We propose a simple automated method for 
detecting/screening AD at an early stage. The proposed 
method is solely based on acoustic features and therefore 
would only require simple readily available audio technology 
that can be adapted to suit patient requirement either in terms 
of being portable or/and wearable. We also explore the 
performance of different classification techniques applied to a 
number of acoustic features automatically extracted from the 
speech recordings obtained from DementiaBank [10]. Finally, 
we investigate the effect of pre-processing and noise reduction 
on the performance of the proposed method. 

The rest of the paper is organized as follows. Section 2 
describes the background. Section 3 describes the experiment 
setup. Section 4 explores the machine learning. Section 5 
presents the results. Finally, section 6 presents the conclusions 
and future work.             

2. Background 
Several publications have demonstrated the potential of speech 
based approaches to identifying dementia. Jarrold et al [11] 
distinguish between different types of dementia by combining 
two profiles of features related to acoustic and lexical features 
collected from 9 controls and 39 patients who have been 
diagnosed with different types of dementia. Features-based 
profiles were extracted from structured interviews and used as 
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input to a machine learning algorithm. A score of 88% was 
achieved by using a multi-layer perceptron algorithm. 

Orimaye et al [12] proposed a diagnostic method to 
identify people with AD using nine syntactic and eleven 
lexical features extracted from transcribed audio files from the 
DementiaBank dataset. They used a sample size of 242 files 
for both healthy older people and people with AD. They 
explored four different machine learning classification 
algorithms, achieving a 74% classification accuracy using a 
support vector machine (SVM) classifier with 10% cross-
validation. 
López et al [8], [13] investigated using features called 
Emotional Temperature derived from the speech along with 
acoustic features from 20 healthy subjects and 20 people 
suffering from dementia. This was done in an attempt to 
evaluate the importance of the emotions encapsulated in the 
spontaneous speech and they showed promising results when 
attempting to differentiate different stages of the disease. 

Furthermore König et al [14] conducted an experiment of 
using four short cognitive vocal tasks with a number of 
participants divided into three groups: healthy control (HC), 
people with Mild Cognitive Impairment (MCI) and people 
with Alzheimer (AD). Their method included pre-processing, 
analyzing the data and feature extraction from the speech 
recordings. They were able to distinguish between HC and 
MCI with an accuracy of 79%, between HC and AD patients 
with an accuracy of 87%, and between those with MCI and 
AD with 80% accuracy.  

Recently and similar to our work, Fraser et al [15] studied 
the potential of using linguistic features to identify 
Alzheimer’s disease. They used speech recordings along with 
their manually transcribed files derived from the 
DementiaBank data set. They chose 240 speech recordings 
belonging to a group of 167 people identified as probably or 
possibly having AD and 233 samples from 97 subjects with no 
memory complaint. In total, a set of 370 acoustic, lexical and 
semantic features were extracted and they then applied two 
machine learning classification algorithms and obtained a 
highest accuracy of 92% in distinguishing between HC 
subjects and AD patients using the top 25 ranked features. 
Although they obtained promising results, their method relies 
on the accuracy of manually transcribed files, whereas a real 
system would need the added complexity of a speech 
recognizer to compute all three types of features. It is unclear 
how the results of Fraser’s system are affected when having to 
rely on erroneous transcripts from an automatic speech 
recognizer. 

Key aspects of our proposed method compared to state of 
art are listed as follows: 

x Feasible for application in real time and in a range 
of environments (home/clinic) since our results have 
been evaluated in the presence of high levels of 
background noise. 

x Higher classification accuracy; outperforming the 
recent highest score in [15] using the top 20 ranked 
features 

x Robustness: as high classification accuracy is 
maintained when using higher numbers of features 
and even when using all 263 features. 

x Not reliant on speech recognition to transcribe the 
audio, so the method could potentially be language 
independent. 

 
 

Figure 1. Speech sample before (A) and after (B) the pre-
processing step. 

3. Experimental setup   

3.1. Data set  
We utilized the DementiaBank data set [10], a free access 
large existing database for Alzheimer’s and related dementia 
diseases collected during longitudinal study conducted by the 
University of Pittsburgh School of Medicine. A verbal 
description of the Boston Cookie Theft picture was recorded 
from people with different types of dementia with an age span 
from 49 to 90 years as well as from elderly HC subjects with 
an age range from 46 to 81 years. During the interviews, 
patients were given the picture and were told to discuss 
everything they could see happening in the picture. The 
speech samples were collected through annual visits from the 
majority of the participants and were transcribed using the 
CHAT transcription format Mac Whinney [16]. We consider 
the same sample size used by Fraser et al [15] with a total of 
473 recording from 97 HC controls having 233 speech 
samples and the rest from 167 AD patients diagnosed as 
possible or probable AD.         

3.2. Pre-Processing 
The first step of the pre-processing is background noise 
reduction, as the DementiaBank data contains a high level of 
background noise.  Effective de-noising is important to enable 
accurate features extraction. The spectral noise gating method 
using version 2.1.1 of the Audacity(R) recording and editing 
software [17] was applied to the audio without sacrificing the 
overall speech quality. Initial experimentation was carried out 
to examine the overall performance with and without the 
presence of the background noise as shown in Figure (1). 

Next, using Praat [18], the instructor utterance was 
removed from the recordings and the audio files were 
converted from MP3 to mono wave; the sampling frequencies 
were kept unchanged. 

3.3. Features extraction   
In our study we focused on extracting acoustic features only 
and investigating the effectiveness of these features in 
detecting dementia at an early stage. This would avoid relying 
on the need for manually transcribed files or indeed the 
problems around achieving reliable speech recognition results 
in challenging far-field acoustic conditions. 
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Table 1. Summary of all the features. 

 

 

Table (1) summarizes all 263 features extracted. The first 
group of features includes the pitch statistics, mean and 
standard deviation of periods, degree of voice breaks, fraction 
of locally unvoiced frames, and the voice quality measures 
including harmonic-to-noise ratio, mean of autocorrelation and 
noise-to-harmonic ratio. Various features related to jitter and 
shimmer scales were also extracted in accordance with [19], 
[8] using Praat [18].  

The second group of features was derived by applying 
machine classification algorithms to identify speech/non-
speech segments. This is done by windowing the audio files 
into 40ms frames with 50% overlapping window. For each 
frame we calculate the short time energy, zero crossing rate 
and the correlation coefficients. The three measures with 

labeled frames are used to train and build a voice activity 
detection (VAD) classifier using predefined frame samples 
randomly selected from the data. Next we used the VAD to 
label each frame for the rest of the audio files. The results 
from the VAD classifier gives us duration statistics for 
speech/silent regions with the amount of pauses presented in 
the recordings [20].  

The last group of features includes the Mel Frequency 
Cepstral Coefficients extracted using the method mentioned 
by [21], including: the first 42 MFCC coefficients and their 
skewness, kurtosis, means and kurtosis and skewness of the 
means) previously used by [15] in addition to the first 26 
coefficients for both filter bank energies and spectral centroid.  
   
  
Table 2. Top 20 rank features as automatically selected by the 

Weka attribute selection function.  

 
 

4. Classification   

4.1. Automatic classification  
We used the capability and accuracy of the automated 
machine learning algorithms to measure the potential of the 
acoustic features to distinguish between AD patients and HC 
subjects. We applied four different classifiers: Bayesian 
Networks (BN), Trees-Random Forest (RF), AdaboostM1 
(AB) and Meta- Bagging (MB). We used the Weka [22] 
software for running the experiments, with k-fold cross 
validation, in which we randomly divide the data into K equal-
sized parts. We leave out part k, fit the model to the other K-1 
parts (combined), and then obtain predictions for the left-out 
kth part. This is done in turn for each part k= 1, 2,..K [23], and 
then the results were averaged to obtain the final result. In our 
study we used k=10 as a cross validation.   

4.2. Feature selection  
Due to the variety and high number of features extracted as 
well as supporting the idea of simplicity, we applied a feature   

# Features set Description  

1 

 
 
 

First Group 
(24) features  

 
 

Task completion time   
Pitch variation features (mean, 
median, STD, Min and Max)   
Mean periods and STD periods 
Fraction of locally unvoiced 
frames and degree of voice breaks 
Jitter: (local, local-absolute, the 
relative average perturbation 
(rap), five-point perturbation 
quotient (ppq5) and the average 
absolute difference (ddp).  
Shimmer: (local, local-dB, three-
point amplitude perturbation 
(apq3), five-point amplitude 
perturbation quotient (apq5), 
eleven-point amplitude 
perturbation quotient (apq11) and 
the average absolute difference 
(dda).  
Mean of autocorrelation 
Mean noise-to-harmonics ratio 
Mean harmonics-to-noise ratio  

2 

Second 
Group (17) 

features  
 

Max, mean, median and STD of   
speech segment length >=0.4 sec 
No. of pauses (pause length of 
>=1ms are considered) 
Total speech & silent durations for 
the segments >= 0.4 sec  
Max, mean, median and STD of   
silent segment length >=0.4 sec 
Total silent length >=0.4 sec. 
including the pauses  
Number of speech and silent 
segments >=0.4 sec. 
Mean and STD of pauses and total 
duration of the pauses    

3 Third Group 
(222) 

features  
 

26 Spectral centroid coefficients  
26 Filter bank energy  coefficients 
First 42 MFCC coefficients and 
their skewness, kurtosis, mean 
with kurtosis and skewness of the 
mean  

# Features  Rank – 
Weight 

1. MFCC2 82.241 
2. Kurtosis -MFCC30 81.606 
3. Mean-MFCC30 81.606 
4. Skewness - MFCC2 80.972 
5. Mean-MFCC16 80.126 
6. Filter bank energy 22 79.069 
7. Spectral centroid -C14 79.069 
8. MFCC30 77.801 
9. Kurtosis -MFCC16 77.589 
10. Filter bank energy 2 77.589 
11. Filter bank energy 24 77.167 
12. MFCC1 76.532 
13. Filter bank energy 15 76.052 
14. Kurtosis -MFCC2 73.995 
15. Filter bank energy 20 72.304 
16. Filter bank energy 13 65.961 
17. No. of silent segments  61.522 
18. Fraction of locally unvoiced frames 59.830 
19. Minimum silent segments length 57.928 
20. Median pitch 49.48 
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selection technique. This is used to rank the features, to 
explore the lowest number of features that provides the best 
classification accuracy, and to avoid overfitting the data. For 
the unprocessed data (with the presence of background noise), 
this function automatically selected the top 22 features based 
on their ranks, whilst 20 features were selected when working 
with the files that had been pre-processed. Table (2) lists the 
top (20) features automatically selected by Weka using the 
built-in attribute selection technique function. 
 

5. Results  
We used the four machine learning algorithms stated in 
section 4.1 to achieve the final results in four different 
configurations resulting from using pre-processing or not, and 
using the full (263) or the reduced features sets we also 
calculate the sensitivity and specificity for the highest score 
achieved for the 2nd and the 4th configurations. 

Table (3) lists the accuracies obtained for the four 
different configurations. The highest classification accuracy 
achieved was 94.71% using the (BN) classifier, running under 
the fourth configuration followed by configuration three with 
93.66% using (BN) classifier, while configurations two and 
one score 92.38% and 90.90% using (MB) and (RF) classifiers 
respectively. 

By adopting a pre-processing step and extracting fewer, 
better quality features for the classifiers, the highest accuracy 
was achieved.  

The sensitivity and specificity for the 2nd configuration 
was 92.00%. Only 19 patients from 240 and 17 HC subjects 
from 233 were incorrectly classified, but when comparing 
with the 4th configuration, only 7 AD patients were incorrectly 
classified making the sensitivity level at 97.00%. However the 
specificity of the 4th configuration was slightly reduced to 
91.00% (only 21 HC were misclassified)        

Our results reveal two important facts: first, the majority 
of the features have the potential to identify dementia even 
when all the features have been utilized by the classifiers 
(93.66% classification accuracy using the full 263 features 
compared to 94.71% when feature selection is used). This is in 
contrast to what had been reported by [15], as their results 
showed a sharp drop off in the case of using all of the features 
(from 92.01% classification accuracy with feature selection 
down to 79% without). 

The first group of features measures the perturbation of 
the fundamental frequency reflecting the defects on vocal 
folds closing and opening times. This is, captured by the 
shimmer and jitter parameters as they measure the differences 

of amplitude and cycles of consecutive periods. Also it is 
known that AD patients produce more noise in their speech 
due to the fluctuations in the airflow, caused by incomplete 
vocal fold closure than do healthy subjects. This is measured 
by the harmonics to noise ratio (HNR) feature, previously 
demonstrated by  [24], [14]. Pauses and number of silent 
segments are more prevalent in AD patients as they tend to 
shorten the speech segments in contrast to HC subjects. This is 
because the AD patients most of the time find that talking 
requires much effort and concentration. The MFCC features, 
although they are well-known as standards in speech 
recognition systems, capture important separation between the 
two groups as they relate to the articulators (libs and tongue) 
control ability, that is decreased in AD patients [25]. 

Secondly our proposed method is robust and very capable 
of identifying dementia patients from healthy subjects even in 
the presence of significant background noise. These facts 
support our proposition for using only acoustic features for 
automatic detection and/or screening of AD at a low cost and 
within the home environment.   

 

6. Conclusions and future work  
 
Speech and language impairment serve as a strong evidence 
for  Alzheimer’s disease detection and it can be used to 
indicate its severity over the time [26]. 

In our study, for the same data set (based on short speech 
recordings from a picture description task.), but using only 
acoustic features, higher accuracy results were obtained, in 
distinguishing between HC subjects and AD patients, than 
those reported in the most recent state of the art [15].  

Furthermore, we used acoustic features derived 
automatically from the speech recordings without the addition 
of any  lexical or syntactic features that rely on complex 
speech recognition technology as in [9].  

In this paper, we proposed a simple high accuracy 
automated method that can be used in the clinic and/or at 
home to guide the diagnosing and/or screening of dementia by 
using just speech. In the future, we plan to investigate more 
features and to test the performance of our method with 
different datasets to classify between neurodegenerative 
dementia patients and people with functional memory 
disorders. The analysis will be applied to the conversations 
between the neurologists and patients during their visit to the 
memory clinic. 

Table 3. Shows the performance under different running configurations.

# 
Machine 
Learning 
Algorithm  

1st Configuration: 
263 features 

 

2nd Configuration:  
Top 22 features 

3rd Configuration: 
Pre-processing with 

263 features  

4th Configuration:  
Pre-processing with top 

20 features  
263 features Accuracy % Accuracy % Accuracy % 

1. Bayes Net  89.64 91.75 93.66 94.71 
2. Meta-Bagging  90.27 92.38 93.65 92.6 
3. Random forest   90.90 91.96 91.96 92.8 
4. AdaBoost M1 82.87 85.83 91.96 91.75 
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Abstract
Cry is a means of communication for an infant. Infant cry sig-
nal is usually perceived as a high-pitched sound. Intuitively,
significant changes seem to occur in the production source char-
acteristics of cry sounds. Since the instantaneous fundamental
frequency (F0) of infant cry is much higher than for adults and
changes rapidly, the signal processing methods that work well
for adults may fail in analyzing these signals. Hence, in this
paper, we derive the excitation source features F0 and strength
of excitation (SoE) using a recently proposed modified zero-
frequency filtering method. Changes in the production char-
acteristics of acoustic signals of infant cries due to pain and
discomfort are examined using the features F0, SoE and sig-
nal energy. These changes are validated by visually comparing
their spectrograms with the spectrograms of the acoustic sig-
nals. Effectiveness of these discriminating features is examined
for different pain/discomfort cry sounds pairs in an ‘Infant Cry
Signals Database (IIIT-S ICSD)’, especially collected for this
study. Fluctuations in the features F0, SoE and energy are ob-
served to be larger in the case of infant cry due to pain, than for
discomfort. These features can help in developing further the
clinical assistive technologies for discriminating different infant
cry types and initiating the remedial measures automatically.
Index Terms: Infant cry signals, modified zero-frequency fil-
tering, pain cry, discomfort cry, excitation source characteristics

1. Introduction
Whenever an infant cries, his/her mother invariably knows the
reason why her baby is crying. Infants cry to communicate ei-
ther their some need or condition that could be physiological,
pathological or environmental. In today’s fast paced life, there
are situations routinely, when the infants are under the physi-
cal/medical care of people other than the parents. For such con-
ditions, if the assistive technologies could be developed that can
help the parents and other care-taking people know the cause
of an infant’s crying, several diverse applications can then be
evolved. It could also assist clinical diagnosis of any medical
condition that an infant may be suffering from. But, this neces-
sitates characterising the changes in the acoustic signal of infant
cry, and also possibly understand the differences in the features
of infant cry signal due to different causes. This paper aims at
exploring few such discriminating features of infant cry signal.

Infant cry is a combination of vocalization, constrictive si-
lence, coughing, choking and interruptions [1]. It provides in-
formation about the health, gender, disease and emotions etc. of
the infant. The first cry of an infant is an important parameter
in determining the Apgar count, which can be used to classify
neonates into healthy and unhealthy (or weak) [1]. This is the
first tool of communication and the sign of life at birth. Various

characteristics of the first cry are vocalizations, facial expres-
sions and limb movements, all of which change over time. In-
fants cry to let others know about their problems or needs, just
like adults do by talking. Thus infant cry falls in the most sensi-
tive range of the human auditory perception [2]. Physiological
variables such as, facial expressions, muscular tonus, sleep and
suction abilities have been studied as parameters to estimate the
needs of an infant [3]. The study of infant cry has gained sig-
nificance over the years, for diverse applications including early
detection of the cause of cry and the possible ailment.

Infant cry signal, produced in response to a stimuli, in-
volves a rhythmic pattern of cry sounds and inhalation. An
important feature used for the analysis of infant cries in most
studies is the instantaneous fundamental frequency (F0). The
fundamental frequency and its first three harmonics were stud-
ied [4, 5]. Infant cries were attempted to be classified on
the basis of pain, sadness, hunger, fear and other few causes
[6, 7, 8, 9]. Pitch characteristics of infant cries were catego-
rized into urgent, arousing, distressing or sick, using linear pre-
dictive (LP) coding [10]. Pitch measurements at every epoch
were taken, using a time-domain based cross-correlation [11].
The start and end time of each cry segment were detected, us-
ing short-time energy function and zero-crossing rate [8, 12].

Spectrographic analysis of cry signal was carried out to
characterize pitch and its harmonics [1]. First three formants
along with fundamental frequency were used for the analysis
in [7, 13]. Cepstrum analysis was used for extracting the funda-
mental frequency, along with LP analysis for extracting the first
three formants [13]. Features such as short-time energy, zero-
crossing rate and linear prediction cepstral coefficients (LPCCs)
were used for the analysis of cry signals [8]. Parameters such as
mean, standard deviation and peak value of the fundamental fre-
quency were used to examine hyper-phonation [10]. Parameters
such as segment density, segment length and pause length were
used to study their relation with the gender of the baby [12].
Analyses of cries of infants with different heart disorders were
carried out by comparing frame-wise mean F0, and minimum
and maximum F0 values [13]. The parameters such as duration,
fundamental frequency and the shape of F0 contour were also
explored to describe a cry [14].

In infant cry, the harmonic structure was observed to be re-
lated to abnormalities in larynx, and dysphonation due to mus-
cle pain or discomfort [1]. The LPCC magnitudes for cries due
to similar causes were observed to be similar, and different for
cries due to different causes [8]. Typical characteristics from the
shape of power spectra of signals were obtained for cries due to
hunger, sleepiness and discomfort, with classification accuracy
of 85% [9]. Segment length analysis of cry signals had shown
similarity among normal infants as compared to those with hear-
ing disorder [12]. Cries of infants were divided into normal,
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and due to disorders such as Tetralogy of Fallot, Ventricular
Septal Defect, Atrial Septal Defect, and Patent Ductus Arterio-
sus [13]. However, the production characteristics of the acous-
tic signals of infant cries due to different causes have not been
studied much. Our preliminary study of infant cry signals [15]
also indicated the need for examining in detail their production
characteristics, where intuitively larger changes seem to occur.
However, evolving the signal processing methods for reliable
F0 extraction from the infant cry signal remains a challenge.

This paper focuses on examining changes in the acoustic
signals of infant cries due to different causes, from their pro-
duction point of view. Especially, the excitation source charac-
teristics derived from the acoustic signals of infant cries due
to pain and discomfort are analysed. An Infant Cry Signals
Database (IIIT-S ICSD) [16] is used. The database consists of
infant cries due to six different causes. But, due to better avail-
ability of multiple pain/discomfort cry sound pairs produced by
same infant, the discriminating features are examined for in-
fant cry sounds due to pain and discomfort categories of cry-
causes. Changes in the signals are examined using three pro-
duction features, namely, F0, strength of excitation (SoE) and
signal energy. The excitation source features F0 and SoE are
extracted using the modified zero-frequency filtering (modZFF)
method [17, 18, 19]. Effectiveness of the discriminating fea-
tures derived using the modZFF method is validated by visually
comparing the spectrograms of an excitation source feature, the
SoE impulse sequence, with that of the acoustic signal. Re-
sults indicate larger changes in the production features of infant
cry due to pain, than for discomfort. These discriminating fea-
tures can be used in developing further the assistive systems for
clinical diagnosis of infant cry sounds, with wide ranging appli-
cations.

This paper is organized as follows. In Section 2, the details
of the data collected are discussed. The modZFF method used
for extracting the excitation source features from the infant cry
signals, is described briefly in Section 3. Section 4 analyses
the production characteristics of acoustic signals of infant cries
due to pain and discomfort. Results are discussed in Section 5.
Section 6 gives a summary, along with scope of further work.

2. Data for the study
The data of acoustic signals of infant cries due to different
causes was especially collected for this study. This database is
named as the Infant Cry Signals Database (IIIT-S ICSD) [16].
The infant cry signals in the ICSD were recorded in a private
paediatric hospital, under the supervision of two medical ex-
perts (paediatricians). The infant cry data was recorded for in-
fants needing routine check-up, vaccination or cure to some ail-
ment. The recordings were made in multiple sessions in the
doctor’s room whenever an infant was brought-in for regular
check-up, vaccination or for cure of some ailment, and the in-
fant cried because of pain, ailment, discomfort, emotional need,
change of environment or hunger/thirst etc. Infant cries were
categorized as per the doctors and parents, into six classes of
cause factors [16], as elaborated in Table 1. The cry data was
recorded for infants in the age group of 3 months to 2 years.

The acoustic signals’ data in the ICSD was recorded using
a Roland Edirol R-09 Wave/MP3 recorder, placed at around 10-
20 cm from infant’s mouth. The data was recorded in stereo
mode, at a sampling rate of 48 kHz and 24 bit/sample coding.
People in the doctor’s room were requested not to speak (for few
secs) during recording of the cry data. Parents were requested
not to make any efforts to calm the baby for a short period of

Table 1: Categories of Possible Causes of Infant Cry

(a) Causes (b) Description of Causes of Infant Cry
1. Pain Cry due to internal pain, or exter-

nal pain caused by vaccination or any
physical hurt on the body

2. Ailment Cries due to any ailment such as cold,
cough or fever etc.

3. Discomfort Cry due to irritation caused by the ex-
ternal factors, e.g., the doctor opening
baby’s mouth (investigation) or nurse
holding the baby (vaccination)

4. Emotional
need for attention

Cry when the baby has emotional need
to go back into parents arms and feel
their touch, or need cuddling

5. Environmental
factors

Cry due to fear of the surroundings or
need a change in the environment (e.g.,
need for changing the diapers)

6. Hunger/thirst Cries due to hunger or thirst

time, so as to record the clean signals. Data was further pre-
processed manually by listening carefully, and using the soft-
ware tools such as Wavesurfer, Audacity and MATLAB to make
it free from any noise or any overlapping speech sounds. The
IIIT-S ICSD consists of 693 infant cry samples of 33 speak-
ers (infants), recorded for total about 670 sec, that are stored
in 76 files [16]. This IIIT-S ICSD database collected for the
purpose of research towards evolving the speech sounds based
assistive technologies, can be made available on request.

The study of relative changes in the production characteris-
tics of infant cry sounds due to different causes requires avail-
ability of acoustic signals data of cry sounds due to different
causes, produced by the same speaker, i.e., an infant. Since,
multiple pairs of acoustic signals of pain/discomfort cry sounds
produced by same infant are better available in the ICSD, the
discriminating features are examined in this paper for pain and
discomfort categories of infant cry sounds. Though, the IIIT-S
ICSD consists of acoustic signals of infant cries due to six cate-
gories of different causes, as diagnosed by medical experts and
the parents (see Table 1). The data-pairs of pain and discomfort
cry signals both produced by same infant are chosen from the
IIIT-S ICSD [16]. These are examined using a recently proposed
signal processing method, the modZFF method, discussed in the
next section.

3. Deriving the excitation source features
using Modified Zero-Frequency Filtering

Changes in the acoustic signals of infant cry sounds are ex-
amined in this study using three production features, namely,
the instantaneous fundamental frequency (F0), the strength of
excitation (SoE) and frame-wise signal energy (E). Produc-
tion of acoustic signal of infant cry apparently involves signifi-
cant changes in the glottal excitation source characteristics [15].
Hence, the excitation source features F0 and SoE are focused
in this study. Though the feature F0 can be derived from the
acoustic signal using the autocorrelation or linear prediction
residual methods, but those methods give only the indicative
results, good for preliminary investigation [15]. In this study,
the excitation source characteristics F0 and SoE are extracted
from the acoustic signal of infant cry using the modified zero-
frequency filtering (modZFF) method [17, 18, 19]. Differences
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Figure 1: Illustration of features for discomfort cry signal:
(a) cry signal waveform, (b) signal energy contour, and (c) SoE
impulse sequence and (d) F0 contour derived using the mod-
ZFF method, for (discomfort) cry signal of infant #S02 (male).

of changes in these features are examined using their mean and
standard deviation. The infant cry cause assessed by the doctor
and parents is used as base reference. Effectiveness of the dis-
criminating features, mainly the excitation source features, is
validated by visually comparing the spectrograms of the SoE
impulse sequence and the acoustic signal.

The excitation source characteristics can be derived from
the normal speech signals, using the zero-frequency filtering
(ZFF) method [17, 18]. But use of the ZFF method to derive the
excitation source features from the acoustic signal of nonverbal
sounds such as infant cry, that have significant changes in their
source characteristics, pose two limitations [19]. (i) Shorter
window length would be required for trend removal operation.
(ii) Impulse sequence for aperiodic signals may be affected by
the choice of shorter window length. Both of these limitations
are addressed in the modified zero-frequency filtering (modZFF)
method [19, 20], that uses gradually reducing window lengths
instead of a fixed window length, for the trend removal opera-
tion. Key steps involved in the modZFF method are as follows:

1. Pre-process the input cry signal (s[n]) by downsampling
to 8 kHz, smoothen it over m sample points to obtain an
equivalent effect of low-pass filtering, and then upsam-
ple it back to the sampling frequency of the original sig-
nal [19]. The resultant pre-processed signal is (s

p

[n]).
2. Get the differenced signal (x̃[n]) from the pre-processed

signal (s
p

[n]), using:

x̃[n] = s
p

[n] � c s
p

[n � 1] (1)

where c is a constant (usually value of c = 0.9 to 1.0
is chosen) and n = 1, 2, 3, .... . The differenced sig-
nal (x̃[n]) gives a zero-mean signal (x̂[n]).

3. Pass the zero-mean signal x̂[n] through a cascade of two
zero-frequency resonators (ZFRs), i.e., two ideal digital
resonators at 0 Hz, to get the ZFR output signal ỹ1[n].

ỹ1[n] =
4X

k=1

a
k

ỹ1[n � k] + x̂[n], (2)

where, a1 = +4, a2 = �6, a3 = +4, a4 = �1.

Figure 2: Illustration of features for pain cry signal: (a) cry
signal waveform, (b) signal energy contour, and (c) SoE im-
pulse sequence and (d) F0 contour derived using the modZFF
method, for (pain) cry signal of infant #S02 (male).

4. Remove the trend built-up in the cascaded ZFRs’ output
(ỹ1[n]) by successive integration operations, i.e., by sub-
tracting the local mean computed over a window. Grad-
ually reducing window lengths of 20 ms, 10 ms, 5 ms,
3 ms, 2 ms and 1 ms are used in the successive trend re-
moval stages, to highlight the excitation source informa-
tion better. Output of each trend removal stage (ŷ2[n]) is
given by below equations:

ŷ2[n] = ỹ1[n] � ȳ[n] (3)

ȳ[n] =
1

2N + 1

NX

n=�N

ỹ1[n] (4)

where, 2N + 1 is window length in number of sam-
ples. Here, ȳ[n] represents the local mean computed over
each successive window. The final trend removed out-
put (ŷ2[n]) is called the modified zero-frequency filtered
(modZFF) signal, i.e. z

m

[n] [19].
5. The positive to negative going zero-crossings of the mod-

ZFF signal (z
m

[n]) give locations of impulses.
6. The slope of the modZFF signal (z

m

[n]) around each
impulse location indicates the relative strength of excita-
tion (SoE) there. The SoE is denoted as  in this paper.

An illustration of SoE impulse sequence and F0 contour
derived from the acoustic signal of infant cry, using the mod-
ZFF method is shown in Fig. 1(c) and Fig. 1(d), respectively.
The modZFF method helps deriving an SoE impulse sequence
(as the excitation source characteristics) from the acoustic sig-
nal of infant cry. The SoE, i.e., the amplitudes of impulses, in-
dicate the strength of excitation around the respective impulse
locations. Using these excitation source features (F0 and SoE),
derived using the modZFF method larger changes are observed
in the production features of infant cry due to pain, than for
discomfort. Analysis details are discussed in the next section.

4. Discriminative analysis of Pain vs.
Discomfort infant cry sounds

In this paper, the production characteristics of acoustic signals
of infants cries data in the IIIT-S ICSD are examined under two
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Table 2: Changes in F0 for pain vs. discomfort cry signals: (a) speaker #, the (b) mean (µ
F0D ) and (c) std. dev. (�

F0D ) for discomfort
cry, the (d) mean (µ

F0P ) and (e) std. dev. (�
F0P ) for pain cry, and the changes (� %) in (f) mean (µ

F0), (g) std. dev. (�
F0) and

(h) normalized std. dev. (�
NF0 ) in F0 for pain cry from discomfort cry signals. Note: M indicates Male and F indicates Female infant.

(a) Speaker
(Infant) #

(b) µ
F0D

(Hz)
(c) �

F0D
(Hz)

(d) µ
F0P

(Hz)
(e) �

F0P
(Hz)

(f) �µ
F0

(%)
(g) ��

F0

(%)
(h) ��

NF0

(%)

S02 (M) 667.9 184.6 737.9 272.5 10.48 47.60 33.60
S03 (M) 705.9 228.5 620.1 268.3 -12.16 17.42 33.68
S04 (F) 676.9 311.8 754.3 380.0 11.43 21.88 9.38
S05 (M) 654.9 259.9 707.8 306.3 8.10 17.83 9.00
S06 (M) 734.7 232.7 647.9 277.5 -11.81 19.21 35.18
S07 (F) 581.8 219.7 619.8 252.9 6.53 15.12 8.07
S09 (M) 620.7 200.4 664.4 308.8 7.04 54.06 43.94
S10 (F) 667.8 239.8 658.6 283.2 -1.37 18.05 19.69
S11 (F) 579.3 152.2 664.0 211.1 14.63 38.70 20.99
S12 (M) 684.1 224.9 685.4 294.8 0.19 31.09 30.85
S13 (F) 523.6 132.9 530.1 150.4 1.24 13.18 11.79
Average 645.2 217.1 662.8 273.3 3.12 27.74 23.29

Table 3: Changes in SoE ( ) for pain vs. discomfort cry signals: (a) speaker #, the (b) mean (µ
 D ) and (c) std. dev. (�

 D ) for
discomfort cry, the (d) mean (µ

 P ) and (e) std. dev. (�
 P ) for pain cry, and the changes (� %) in (f) mean (µ

 

), (g) std. dev. (�
 

)
and (h) normalized std. dev. (�

N ) in SoE ( ) for pain cry from discomfort cry signals. Note: M/F indicates Male/Female infant.
(a) Speaker

(Infant)#
(b)

µ
 D

(c)
�
 D

(d)
µ
 P

(e)
�
 P

(f) �µ
 

(%)
(g) ��

 

(%)
(h) ��

N 

(%)

S02 (M) .3253 .2132 .2056 .1374 -36.80 -35.55 1.97
S03 (M) .1613 .1247 .2640 .1776 63.37 42.42 -12.98
S04 (F) .2454 .1880 .2185 .1556 -10.96 -17.23 -7.04
S05 (M) .2986 .1860 .2149 .1815 -28.02 -2.42 35.56
S06 (M) .2782 .1950 .2098 .1674 -24.59 -14.15 13.83
S07 (F) .2321 .1770 .2955 .2292 27.32 29.49 1.71
S09 (M) .2305 .1830 .1713 .1528 -25.68 -16.50 12.35
S10 (F) .1582 .1305 .2262 .1637 42.98 25.44 -12.27
S11 (F) .2745 .1880 .2212 .1676 -19.42 -10.85 10.63
S12 (M) .1447 .1307 .1453 .1433 0.41 9.64 9.19
S13 (F) .3542 .2220 .3127 .2407 11.72 8.42 22.81
Average .2457 .1762 .2259 .1743 0.03 1.70 6.89

categories, namely, pain and discomfort. Since the data avail-
able in other categories is less for same speaker (i.e., same in-
fant), these cry categories may be analysed in future after ex-
tending the database. The excitation source features F0 and
SoE are derived using the modZFF method, for each infant cry
signal. The signal energy E, a production feature, represents
the combined effect of the excitation source and the vocal tract
filter. It is computed for frame size of 5 ms at each time-instant.

Relative changes are examined in the production features
(F0, SoE and E) of the acoustic signals of infant cries due to
pain and discomfort. An illustration of energy (E) contour, the
SoE impulse sequence and the F0 contour for discomfort cry is
shown in Fig. 1(b), (c) and (d), respectively. Changes in these
features for pain cry are illustrated in Fig. 2, in a similar way.
Some patterns can be observed. In Fig. 2, for infant cry due to
pain, the F0 contour has near cyclic changes with larger fluctua-
tions, that could be due to physiological conditions during pain.
In Fig. 1, for infant cry due to discomfort, the F0 contour is
relatively flat, with changes at larger intervals and shorter fluc-
tuations. Similar changes are observed in the SoE and E also.

Quantitative analysis is carried out by measuring the statis-
tical parameters mean (µ), standard deviation (� or std dev) and
normalized standard deviation (�

N

= �/µ) in the production
features F0, SoE and E. Changes in these parameters for pain

cry vs. discomfort cry are compared using the percentage dif-
ference, e.g., �µ

F0 = (µ
F0P

�µ
F0D

)/µ
F0D

⇥100(%). Like-
wise, changes in the features SoE and E are compared using
the �µ

 

(%) and �µ
E

(%), respectively. Changes in fluctua-
tions in the features F0, SoE and E are given in Table 2, Table 3
and Table 4, respectively, for pain vs. discomfort cry signals of
first 11 infants (6 males, 5 females). Data of two speakers (S01
and S08) is discarded due to overlapping speech present in the
signal. Similar changes in the production features are observed
for pain/discomfort across speakers in the database.

In Table 2, the fluctuations in F0 (��(%) in column (g)) are
larger for pain cry in comparison to discomfort cry. Normalized
fluctuations (��

N

(%) in column (h)) are also larger for pain
cry. In general, the average F0 values increase for pain cry
w.r.t. discomfort cry (�µ

F0 (%) in column (f)). But, in few
cases (S03, S06 and S10), the F0 for discomfort cry (if high)
may reduce for pain cry.

In Table 3, the average SoE values (�µ
 

(%) in column (f))
reduce in general for pain cry w.r.t. discomfort cry. This re-
duction in the SoE with increase in F0, is in line with earlier
observation of relative changes (in opposite direction) in the F0

and SoE, for normal and shouted speech of adults [21, 22]. In-
terestingly, in the cases (S03, S10) where the mean F0 (µ

F0 )
decreases for pain cry w.r.t. discomfort cry, the mean SoE
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Table 4: Changes in signal energy (E) for pain vs. discomfort cry signals: (a) speaker #, the (b) mean (µ
ED ) and (c) std. dev. (�

ED ) for
discomfort cry, the (d) mean (µ

EP ) and (e) std. dev. (�
EP ) for pain cry, and the changes (� %) in (f) std. dev. (�

E

) and (g) normalized
std. dev. (�

NE ) in E for pain cry from discomfort cry signals. Note: M indicates Male and F indicates Female infant.
(a) Speaker

(Infant)#
(b)

µ
ED

(c)
�

ED

(d)
µ

EP

(e)
�

EP

(f) ��
E

(%)
(g) ��

NE

(%)

S02 (M) .2351 .1361 .1904 .1042 -23.44 -5.46
S03 (M) .1370 .1025 .1625 .0905 -11.71 -25.56
S04 (F) .1474 .1070 .1525 .0893 -16.54 -19.34
S05 (M) .1818 .1080 .1386 .0882 -18.33 7.12
S06 (M) .1756 .1170 .1561 .1037 -11.37 -0.28
S07 (F) .1530 .0960 .1917 .1049 9.27 -12.77
S09 (M) .1617 .1120 .1303 .0874 -21.96 -3.14
S10 (F) .1444 .0930 .1346 .0739 -20.54 -14.75
S11 (F) .1602 .1120 .1502 .1082 -3.39 3.04
S12 (M) .0829 .0746 .1073 .0981 31.50 1.60
S13 (F) .1922 .1020 .1759 .1243 21.86 33.16
Average .1610 .1055 .1536 .0975 -5.88 -3.31

Figure 3: Validation of the excitatation source characteris-
tics of acoustic signal of discomfort cry, using spectrograms:
(a) acoustic signal, and spectrograms of (b) the acoustic signal
and (c) the SoE impulse sequence derived using the modZFF
method, for discomfort cry signal of infant #S13 (female).

(µ
 

) increases. The fluctuations in the SoE (|��
 

|(%) in
column (g)) and normalized fluctuations (|��

N |(%) in col-
umn (h)) are larger for pain cry w.r.t. discomfort cry of most
infants. Similar trend of changes in the fluctuations in signal
energy (E) are observed in Table 4, in columns (f) and (g).

5. Discussion on results
Changes in the excitation source feature SoE (in Table 3) ap-
pear to be more prominent than changes in the signal energy E
(in Table 4), as also observed in Fig. 2. Prominence of changes
in the source characteristics in comparison to acoustic signal is
validated by visual inspection of the spectrograms (|X(⌧,!)|2),
used as the ground truth. These spectrograms are obtained us-
ing the short-time Fourier transform X(⌧,!) =

P
n=1
n=�1 x[n]

w[n � m]e�jwn [23, 24], for signal frames of size 20 ms, with
a frame shift of 1 ms. Spectrograms for the SoE impulse se-
quences (Fig. 3(c) and Fig. 4(c)), reveal the excitation source
characteristics better than the spectrograms of the acoustic sig-
nals (Fig. 3(b) and Fig. 4(b)). These spectrograms also indicate

Figure 4: Validation of the excitatation source characteristics
of acoustic signal of pain cry, using spectrograms: (a) acoustic
signal, and spectrograms of (b) the acoustic signal and (c) the
SoE impulse sequence derived using the modZFF method, for
pain cry signal of infant #S13 (female).

the nature of inter-cry changes in the excitation source features,
that are similar to those illustrated in Fig. 1(d) and Fig. 2(d).

For pain cry signal, the contours of F0 and harmonics have
cyclic changes with larger fluctuations (region 1.2 sec to 2.4 sec
in Fig. 4). But, for cries due to discomfort these contours are rel-
atively flat with fewer fluctuations (region 1.1 sec to 2.3 sec in
Fig. 3). The cyclic changes with larger fluctuations for pain cry
are possibly due to significant changes in the excitation source
characteristics during the production of cry signal in shorter and
louder bursts. Whereas, relatively flat contours with lesser fluc-
tuations for discomfort cry may be due to slow moaning, with
related smaller changes in the excitation source characteristics.

6. Summary and conclusion
In this paper, the production characteristics are examined for
acoustic signals of the infant cries due to pain and discomfort.
Aim is to characterise the infant cry signal and identify features
that help distinguishing the causes of infant cries. Acoustic sig-
nals of infant cries due to pain or discomfort are examined us-
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ing three production features F0, SoE and signal energy. The
excitation source features F0 and SoE are derived using the
modified zero-frequency filtering method. The F0 contour for
pain cry has cyclic changes with larger fluctuations, but it is
relatively flat with lesser fluctuations for discomfort cry. This
observation is validated quantitatively by comparing the rela-
tive fluctuations and normalized fluctuations in F0 and SoE for
pain vs. discomfort cry. Significance of changes in the source
characteristics is validated using spectrograms of the SoE im-
pulse sequence and the acoustic signal. The results are consis-
tent across cry signals of speakers (infants) in the database.

In future, changes may be examined in the production char-
acteristics of acoustic signals of infant cries due to remaining
categories other than pain and discomfort. This author is work-
ing towards developing the systems where automated detection
of cause of infant cry may help the parents as well the doc-
tors towards assisted clinical diagnosis of an infant’s ailment.
Details of these attempts may be expected to appear in future
publications of the author.

However, this study highlights the importance of examin-
ing changes in the excitation source characteristics of acous-
tic signals of the paralinguistic sounds such as infant cry. The
study should also be helpful towards developing the assistive
technologies and systems that may help early diagnosis of the
ailment and medical care to an infant by identifying the cause
of cry, from the acoustic signal. It could be immensely useful in
the cases of ailments where the reaction-time of ailment detec-
tion and remedial measures could be of critical importance for
an infant’s life.
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Abstract
Dysarthria refers to a group of motor speech disorders as the re-
sult of any neurological injury to the speech production system.
Dysarthric speech is characterised by poor speech articulation,
resulting in degradation in speech quality. Hence, it is important
to correct or improve dysarthric speech so as to enable people
having dysarthria to communicate better.

The aim of this paper is to improve the quality of continuous
speech of several people suffering from dysarthria. Experiments
in the current work use two databases- Nemours database and
speech data collected from a dysarthric speaker of Indian origin.
Durational analysis of dysarthric speech versus normal speech
is performed. Based on the analysis, manual modifications are
made directly to the speech waveforms and an automatic tech-
nique is developed for the same. Evaluation tests indicate an
average preference of 78.44% and 67.04% for the manually and
automatically altered speech over the original dysarthric speech,
thus emphasising the effect of durational modifications on the
perception of speech quality. Intelligibility of speech gener-
ated by three techniques, namely, proposed automatic modifica-
tion technique, a formant re-synthesis technique, and an HMM-
based adaptive system, is compared.

Index Terms: continuous dysarthric speech, Indian dysarthric
speaker, durational modifications, formant re-synthesis, HMM-
based adaptive system

1. Introduction

The word dysarthria, originating from dys and arthrosis, means
difficult or imperfect articulation. Speech of a person suffer-
ing from dysarthria is affected due to a neurological defect in
the speech production system [1]. There is a lack of coordi-
nation amongst the various parts involved in speech production
to produce understandable speech. Dysarthric speech is char-
acterised by the poor articulation of phonemes, problems with
speech rate, incorrect pitch trajectory, swallowing or drooling
while speaking. As a result, people with dysarthria have prob-
lems with speaking most often. The main aim of the paper is to
improve the speech quality of continuous dysarthric speech.

Several efforts on correcting dysarthric speech to make it more
intelligible are available in the literature. In [2], dynamic time
warping (DTW) is first performed across dysarthric and normal
phoneme feature vectors for each utterance, and then a transfor-
mation function is determined to correct dysarthric speech. In
[3] and [4], the intelligibility of vowels in isolated words spoken
by a dysarthric person is improved by formant re-synthesis of
transformed formants, smoothened energy and synthetic pitch
contours. In [5] and [6], dysarthric speech is improved by cor-
recting pronunciation errors based on given transcriptions and

by morphing the waveform in time and frequency. The au-
thors report that the morphing doesn’t increase intelligibility
of the dysarthric speech. Some corrections are made by us-
ing an HMM-based speech recogniser followed by a concate-
nation algorithm and grafting technique to correct wrongly ut-
tered units [7], or by synthesising speech using HMM-based
adaptation [8]. In [9], poorly uttered phonemes are replaced
by phonemes from normal speech with discontinuities in short
term energy, pitch and formant contours at concatenation points
addressed.

The work carried out in this paper focuses on continuous speech
and also unstructured text. A durational analysis is carried
out across dysarthric and normal speech. Though dysarthria is
mostly characterised by slow speech, there are studies reporting
rapid rate of speech [1], [10]. Based on the analysis for every
dysarthric speaker, manual modifications are made directly to
the speech waveforms. An automatic technique is proposed to
achieve the same. The effect of these durational modifications
on the perceptual quality of speech is studied.

Nemours database [11], a standard database for dysarthric
speech, is used in the experiments. Additionally, a dysarthric
speech dataset collected from an Indian speaker is also used.
Unlike the text in Nemours database, the text in the Indian
speech data does not conform to any particular structure. Analy-
sis and modifications are made to speech data of different speak-
ers in the Nemours database and the Indian English dysarthric
dataset. Results of subjective evaluation, comparing modified
and original dysarthric speech are then presented.

Additionally, two other systems are developed to improve the
intelligibility of dysarthric speech. The first is a formant re-
synthesis method based on an earlier work [4]. The second is
an HMM-based text-to-speech (TTS) synthesis system adapted
to the dysarthric person’s voice [8]. We assume that a recogni-
tion system having 100% recognition accuracy is already avail-
able to transcribe speech for synthesis. A word error rate test is
conducted to assess the intelligibility of the speech produced by
these two systems along with the proposed automatic technique.

The rest of the paper is organised as follows. Section 2 describes
the databases used in the experiments. The formant re-synthesis
method is described in Section 3 followed by the HMM-based
speech synthesis system using adaptation in Section 4. Dura-
tional analysis performed on the data along with the proposed
modifications are detailed in Section 5. Evaluation results are
presented in Section 6. The work is concluded in Section 7.
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2. Speech databases used

Standard databases available for dysarthric speech are Univer-
sal Access, TORGO and Nemours [11–13]. Universal Access
database contains audiovisual isolated word recordings and is
hence not suitable for our purpose. TORGO database consists
of acoustic and articulatory data of non-words, short words, and
complete sentences. However, complete sentences are fewer in
number and they account for low phone coverage. Nemours
database consists of 74 sentences for each dysarthric speaker.
Experiments are therefore performed with Nemours database
and Indian English dysarthric speech dataset 1. The Indian En-
glish dysarthric speech data will be referred to as “IE” in this
paper.

2.1. Nemours database

Nemours database [11] consists of dysarthric speech data of
11 male North American speakers. The degree of severity of
dysarthria varies across speakers: mild (BB, FB, LL, MH),
moderate (JF, RK, RL) and severe (BK, BV, SC). The speech
data consists of 74 nonsense sentences for each speaker. The
sentences follow the same format: “The X is Y’ing the Z”,
where X and Z are monosyllabic nouns and Y’ing is selected
from a set of bisyllabic verbs. Along with the recording of
each dysarthric speaker, the corresponding speech by a normal
speaker is recorded. The normal speakers are appended with
the prefix “JP”. Transcriptions are available in terms of Arpabet
labels [14].

Phone level segmentation is available for dysarthric speech
while word level segmentation is available for normal speech.
The procedure to obtain phone level segmentation for normal
speech is described in the following section. Pauses within an
utterance were already marked for speaker RK in the database
but were not available for speakers BK, RL and SC. Hence for
these three speakers, pauses were marked manually. Signifi-
cant intra-utterance pauses are not present in the speech of other
dysarthric speakers. For speaker KS, phonemic labeling is not
provided. Hence, it is excluded from the experiments.

2.1.1. Segmentation of normal speech data at the phone level

Hidden Markov models (HMM) are used to segment normal
speech data at the phone level. Word level boundaries and
phone transcriptions for each word are available in the database.
HMMs are used to model monophones in the data. Source and
system parameters of speech are modeled by these HMMs. The
source features are logf0 (pitch) values, along with their ve-
locity and acceleration values. The system parameters are mel
frequency cepstral coefficients (MFCC), along with their veloc-
ity and acceleration values. Instead of embedded training of
HMM parameters at the sentence level, embedded re-estimation
is restricted to the word boundary. This is inspired by [15],
where phone level alignment is obtained from embedded train-
ing within syllable boundaries.

HMMs built using Carnegie Mellon University (CMU) corpus
[16] were used as initial monophone HMMs instead of using
the conventional flat start method to build HMMs, where the

1The Indian English dysarthric speech data can be found
at the link: www.iitm.ac.in/donlab/website_files/
resources/IEDysarthria.zip

models were initialised with global mean and variance. This
resulted in better phone boundaries. Data of American speaker
referred to as “rms” in CMU corpus was used for this purpose.

2.2. Indian English dataset

2.2.1. Text selection

The text was chosen from CMU corpus [16]. 73 sentences were
selected such that they ensured enough phone coverage. The
phoneme transcriptions of the text were obtained from CMU
pronunciation dictionary [17] and were later manually corrected
when the word pronunciation varied. An additional label “pau”
was added to account for pauses or silences.

2.2.2. Speech recording

The speech of an Indian male suffering from cerebral palsy, who
is mildly dysarthric, was recorded. The speech was recorded in
a low-noise environment and sampled at 16 kHz, with 16 signif-
icant bits. The recording was performed over several sessions,
each session not exceeding half-an-hour. Frequent breaks were
given during the sessions as per the convenience of the speaker
so that fatigue didn’t affect the quality of speech. About 11
minutes of speech data was collected. Frenchay dysarthria as-
sessment (FDA) [18] was not performed due to unavailability
of a speech pathologist.

2.2.3. Segmentation at the phone level

Before segmenting the dysarthric speech data, long silence re-
gions (more than 100 ms) were removed from the speech wave-
forms by voice activity detection (VAD). 11 minutes of data
then reduced to about 8.5 minutes. Segmentation was per-
formed semi-automatically. HMMs were built from already
available normal English speech data of an Indian (Malay-
alam) speaker “IEm” [19], as speaker IE is a native Malayalam
speaker. These HMMs were used as initial HMMs to segment
dysarthric speech data at the phoneme level. Segmentation was
then manually inspected and corrected.

3. Formant re-synthesis technique

In reference [4], the intelligibility of dysarthric vowels in iso-
lated words of CVC type (C- consonant, V- vowel) is improved.
Borrowing from this work, a similar approach is adopted to im-
prove intelligibility of continuous dysarthric speech in this pa-
per. Formants F1-F4, pitch and short-term energy values are
extracted from dysarthric and normal speech. Frame length of
25 ms and frame shift of 10 ms are considered. Formant trans-
formation from dysarthric space to normal space is only carried
out in the vowel regions. For this purpose, utterances segmented
at the phone level are required. The transformation makes use
of vowel boundaries and vowel identities. Then, formant val-
ues at the stable point of the vowels are determined [4]. The
stable point (or region) is the vowel point (or region) that is
least affected by context. A 4-dimensional feature vector rep-
resents each instance of a vowel- F1stable, F2stable, F3stable
and vowel duration. In [4], formant transformation is achieved
by training Gaussian mixture model (GMM) parameters using
joint density estimation (JDE). This works well for data that
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Figure 1: Formant re-synthesis of dysarthric speech

is phonetically balanced. The data used in the experiments in
this paper suffers from data imbalance as the frequency of in-
dividual vowels in the database varies. To overcome this prob-
lem, a universal background model-GMM (UBM-GMM) [20]
is trained and adapted to individual vowels of dysarthric and
normal speech. Maximum a posteriori (MAP) is the adaptation
algorithm used. The procedure to obtain adapted models is as
follows:

• Each frame in a vowel region is represented by a 4-
dimensional feature vector- formants F1-F3, and vowel
duration. All the feature vectors, irrespective of stable
points, are pooled together for all vowel instances across
dysarthric and normal speech to train the UBM-GMM.

• The adaptation data for a vowel of dysarthric or normal
speech is a 4-dimensional feature set (F1stable, F2stable,
F3stable, vowel duration) across all instances of that
vowel.

• A set of (2 ⇤ number of vowels) models is obtained
by adapting only the means of the UBM-GMM. This is a
codebook of means for the same vowel across dysarthric
and normal speech.

The dysarthric speech data is initially split into train (80%) and
test data (20%). Normal speech corresponding to the dysarthric
speech in Nemours database is used for obtaining the codebook.
For the Indian dysarthric speech, speech of speaker “ksp” from
CMU corpus [16] is used as normal speech. Adapted models
are built using the train data. The codebook size of the UBM-
GMM is 64. The procedure to re-synthesise dysarthric speech is
shown in Figure 1. For test data, pitch (F0) and energy contours
are smoothened. Smoothening is performed by using a median
filter of order 3 and then low-passing using a Hanning win-
dow. This approach differs from the work carried out in refer-
ence [4], where a synthetic F0 contour is used for the dysarthric
speech. Using the vowel boundaries, every vowel in the test
utterance is represented by a 4-dimensional feature vector (sta-
ble F1-F3+vowel duration). Using the codebook of means for
vowels across dysarthric and normal speech, the features of the
dysarthric vowels are replaced by the means of their normal

counterpart. The replaced or transformed stable point formants
represent the entire vowel. Hence, the same stable point for-
mant value is repeated across the duration of the vowel. Using
the transformed formant contours, smoothened pitch and energy
contours, speech is synthesised using a formant vocoder [21].
The modified dysarthric speech is then obtained by replacing
non-vowel regions in the re-synthesised dysarthric speech by
the original dysarthric speech.

4. HMM-based synthesiser using
adaptation

An HMM-based TTS synthesiser (HTS) adapted to the
dysarthric person’s voice is developed [22], [8]. This is to eval-
uate the maximum intelligibility of synthesised speech that can
be obtained given a recognition system for dysarthric speech
that is 100% accurate. The purpose of using an HMM-based
adaptive TTS synthesiser is two-fold: (1) not enough data to
build a speaker-dependent system for every dysarthric speaker,
and (2) to correct the pronunciation of the dysarthric speaker.

The HMM-based adaptive TTS can be divided into three
phases- training, adaptation and synthesis. Audio files and cor-
responding transcriptions are available for training and adap-
tation data. In the training phase, mel-generalized cepstral
(MGC) coefficients and logf0 values, along with their veloc-
ity and acceleration values are extracted from the audio files.
Average voice models are then trained from speech features
corresponding to the training data. In the adaptation phase,
CSMAPLR+MAP adaptation (CSMAPLR- constrained struc-
tural maximum a posteriori linear regression) is performed
to adapt the average voice models to the adaptation features.
Speaker adaptive training (SAT) is performed to reduce the in-
fluence of speaker differences in the training data. In the synthe-
sis phase, the test sentence is broken down into phones. Phone
HMMs are chosen based on the context and concatenated to
form the sentence HMM. MGC coefficients and f0 values are
generated from the sentence HMM, and speech is synthesised
using mel log spectrum approximation (MLSA) filter.

To build an adaptive TTS system for speakers in Nemours
database, speech of two normal American male speakers, “bdl”
and “rms” from the CMU corpus, is used as the training data.
For the Indian English dysarthric data, the training data is
speech of an Indian speaker “ksp” from the CMU corpus. 1 hour
of speech data is available for every speaker in the CMU cor-
pus. Dysarthric speech data is split into adaptation data (80%)
and test data (20%). Synthesised speech of the sentences in the
test data is used in the subjective evaluation. For developing the
HMM-based adaptive TTS sythesiser, HTS version 2.3 software
is used.

5. Proposed modifications to dysarthric
speech

5.1. Durational analysis

A durational analysis across dysarthric and normal speech
is performed. The following observations with respect to
dysarthric speech are made:

• The average phone durations of dysarthric speech in the
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Figure 2: Average vowel durations across dysarthric and normal
speakers

databases are longer than their normal speech counter-
parts [13, 23, 24]. As an example, average vowel dura-
tions are plotted in Figure 2.

• Standard deviations of vowel durations of dysarthric
speakers are also longer (Figures 3 and 4), indicating that
either the vowel is sustained for a longer duration or is
hardly uttered.

• Speech data of the Indian dysarthric speaker IE is com-
pared with the speech of different normal speakers. Four
different nativities of Indian English (Hindi, Tamil, Tel-
ugu and Malayalam) in the Indic TTS corpus [19], and
speech of an American speaker “rms” from CMU cor-
pus [16] are the normal speech data considered. It is
observed that the duration plot of speaker IE is clearly
shifted with respect to that of normal speakers (Figure
5).

• For the same set of sentences spoken by dysarthric and
normal speakers, the total utterance duration is longer
for the dysarthric speaker. This indicates insertion of
phones, intra-utterance pauses, etc. while speaking.

Based on the above analysis, if the duration is reduced closer
to that of normal speech, the quality of dysarthric speech may
improve. Reference [25] observes that as phone durations of
dysarthric speech increase, the intelligibility of speech in terms
of FDA score comes down. Taking this observation forward,
in this paper, dysarthric speech is modified both manually and
automatically to achieve this durational reduction.

5.2. Manual Modifications

The increase in phone duration is due to elongation of vowels,
artifacts while producing sounds, or significant pauses within
words. Hence, randomly increasing the speech rate of the ut-
terance won’t be useful, specific corrections are required. Each
phoneme segment of the dysarthric speech is compared with
its counterpart in normal speech. Elongations and artifacts are
manually removed, keeping in mind not to degrade the intelligi-
bility of speech. Steady regions of elongated vowels are spliced
out. Segments are carefully deleted so as to not cause a sud-
den change in spectral content. For speaker IE, the recorded
speech of Malayalam speaker “IEm” is considered as the ref-
erence. Original and corresponding manually modified wave-
forms are used in the subjective evaluation.

5.3. Proposed automatic method

A Dynamic Time Warping (DTW) algorithm is used to com-
pare the similarity between MFCC features of dysarthric (test)
and corresponding normal speech (reference). 39-dimensional
MFCC features, including velocity and acceleration values are
used. Wherever the slope of the DTW path is zero for a mini-
mum number of frames, termed as frameThres, those frames are
considered for deletion. When deleting frames, it is important
to ensure that there is no sudden change in energy at the points
of join, i.e., the energies between frames before and after dele-
tion. It is observed that artifacts are introduced in places where
the energy difference between frames at concatenation points
is high. Therefore, the short-term energy (STE) difference is
considered as an additional criterion for deletion. Whenever
STE difference is less than a certain limit, STEThres, frames
are deleted. In the experiments, frameThres and STEThres are
set to 6 and 0.5 respectively. These thresholds are obtained em-
pirically after testing with frameThres ranging from 4 to 10 and
STEThres ranging from 0.3 to 2.5. This automatic procedure of
deletion is illustrated in Figure 6.

The DTW paths of a sample utterance of dysarthric speaker RL
before and after automatic modifications compared with respect
to the same utterance of normal speaker JPRL is shown in Fig-
ure 7. It is observed that the DTW path is more diagonal in
Figure 7b compared to Figure 7a, indicating that the modified
dysarthric utterance is more similar to the normal utterance. It
also results in a considerable reduction in number of frames
or duration of the utterance. This method is referred to as the
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Figure 3: Duration plot for vowels of
dysarthric speech BB and normal speech
JPBB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Duration in seconds

p
ro

b
a
b
il
it
y
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

 

 

RL
JPRL

Figure 4: Duration plot for vowels of
dysarthric speech RL and normal speech
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Figure 6: Flowchart of automatic (DTW+STE) method to mod-
ify dysarthric speech

DTW+STE modification method.

6. Performance evaluation

Subjective evaluation is conducted to evaluate the techniques
used. A pairwise comparison test is performed to assess the
proposed modification techniques and a word error rate test to
compare intelligibility across different methods. Naive listen-
ers are used in the subjective tests rather than expert listeners in
order to assess how a naive listener, who has little or no interac-
tion with dysarthric speakers, evaluates the quality of dysarthric
speech. Tests are conducted in a noise-free environment.

6.1. Pairwise comparison tests

A pairwise comparison test is conducted to compare the qual-
ity of speech modified by the proposed techniques and original
dysarthric speech [26]. In the “A-B” test, A is played first and
then B, and vice-versa in the “B-A” test to remove the bias in lis-
tening. “A” is the modified speech and “B” is the original speech
in both the tests. Preference is always calculated in terms of the
audio sample played first. The score “A-B+B-A” gives an over-
all preference for system A against system B and is calculated
by the following formula:

“A � B + B � A00 =
“A � B00 + (100 � “B � A00)

2

About 11 listeners evaluated a set of 8 sentences for each
speaker. Results of the evaluation are shown in Figure 8. Re-
sults indicate a preference for the modified versions over orig-
inal dysarthric speech in almost all cases. From Figure 8, it is
evident that the manual method out-performs the DTW+STE
(automatic) method. This is because manual modifications are
hand-crafted carefully so as to produce better-sounding speech.
For speakers BB and IE, who are mildly dysarthric, the perfor-
mance of the DTW+STE method drops drastically due to arti-
facts introduced in the modified speech. This is true for speakers
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Figure 7: DTW paths of an utterance of speaker RL between:
(a) original dysarthric speech and normal speech, and (b) mod-
ified dysarthric speech and normal speech

Figure 8: Preference for manually and automatically
(DTW+STE) modified speech over original dysarthric speech
of different speakers

BK and BV, where artifacts in the original speech are not elim-
inated by the DTW+STE technique. The drop in performance
from the manual to the automatic technique is quite high for
speaker SC because of the slurry nature of speech. Hence, in
such cases identifying the specifics of dysarthria for individual
speakers is vital to improving speech quality. Nonetheless, the
performance of both methods is almost on par for speakers JF,
LL, FB, MH, RL, RK who are mild to severely dysarthric.

Pairwise comparison tests were also conducted between origi-
nal and formant re-synthesised speech, and between automat-
ically modified and formant re-synthesised speech. About 10
listeners evaluated a set of 8 sentences for each speaker in each
test. Preference was individually over 82% for the original
dysarthric speech and DTW+STE method over the formant re-
synthesis method.
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Figure 9: Word error rates for different types of speech across dysarthric speakers

6.2. Intelligibility tests

To evaluate intelligibility across different systems, a word er-
ror rate (WER) test was conducted. Based on the feedback on
the pairwise comparison tests and the text in Nemours database
containing nonsensical sentences, it is difficult to recognise
words in dysarthric speech. Hence, given the text, listeners were
asked to enter the number of words that was totally unintelligi-
ble. Though the knowledge of the pronounced word may have
an influence on its recognition, this is a uniform bias that is
present when evaluating all systems. About 10 listeners partic-
ipated in the evaluation. The following types of speech were
used in the listening tests:

P (original): original dysarthric speech
Q (DTW+STE): dysarthric speech modified using the
DTW+STE method
R (Formant Synth): output speech of the formant re-synthesis
technique
S (HTS-in): speech synthesised using the HMM-based adapted
TTS for text in the database not used for training (held-out sen-
tences)
T (HTS-out): speech synthesised using the HMM-based
adapted TTS for text from the web

The results of the WER test are presented in Figure 9. It can
be seen that the intelligibility of formant re-synthesis technique
is poor for all speakers. For the DTW+STE method, WER is
higher compared to original dysarthric speech for a majority of
speakers. WER of HMM-based adaptive synthesiser on held
out-sentences, i.e., sentences not used during training is high
compared to original dysarthric speech in almost all cases. In-
telligibility of sentences synthesised from the web is quite poor
compared to that of held-out sentences for speakers in Nemours
database. This is the opposite for Indian dysarthric speaker
IE. This is due to the similar structure of held-out sentences
and sentences used in training the HMM-based synthesiser in
Nemours database, unlike the sentences in the Indian dysarthric
dataset that are unstructured. Overall, the intelligibility of orig-
inal dysarthric speech does not increase. However, for speak-
ers BK, BV and JF, DTW+STE modified speech has the lowest
WER. For speaker RK, the intelligibility of HMM-based adap-
tive synthesised speech is on par with that of original dysarthric
speech. By informal listening, it is noted that some pronun-
ciations of the dysarthric speaker do get corrected in the sen-

tences synthesised using the HMM-based adaptive TTS system.
This indicates that the technique used to increase intelligibility
largely depends on the type and severity of dysarthria.

While the DTW+STE does not need segmented boundaries, it
makes use of a reference for comparison. Only insertion of
sounds are taken care of, deletion and substitution of phonemes
are not addressed. Though this technique does not increase in-
telligibility for most speakers, the overall perceptual quality of
the modified dysarthric speech is improved.

In the speech synthesis domain, the HMM-based adaptive syn-
thesiser is a statistical parametric speech synthesiser (SPSS) and
the DTW+STE technique is analogous to a unit selection speech
(USS) synthesiser. The synthesised speech of the HMM-based
synthesiser lacks the voice quality of the dysarthric speaker.
Similar to the USS system, the speech output of the DTW+STE
method has discontinuities but preserves the voice characteris-
tics of the dysarthric speaker.

7. Conclusions

Continuous dysarthric speech quality is improved upon in
the work. A durational analysis is performed by comparing
dysarthric and normal speech for speakers in Nemours database
and an Indian English speaker having dysarthria. Based on the
analysis, dysarthric speech is directly modified manually, and
an automatic method is developed to do the same. The intelligi-
bility of dysarthric speech modified using different techniques is
studied. Evaluations indicate an improvement in speech quality
using the STE+DTW method. This emphasises the importance
of duration in perceptual speech quality, indicating that this kind
of modification may be used as a pre-processing step for im-
proving dysarthric speech quality. Only durational attributes
are analysed in this work, this can be extended to analyse other
attributes that affect the speech of a dysarthric person.
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Abstract
Progressive apraxia of Speech (PAoS) is a progressive mo-
tor speech disorder associated with neurodegenerative disease
causing impairment of phonetic encoding and motor speech
planning. Clinical observation and acoustic studies show that
duration analysis provides reliable cues for diagnosis of the dis-
ease progression and severity of articulatory disruption. The
goal of this paper is to develop computational methods for ob-
jective evaluation of duration and trajectory of speech artic-
ulation. We use phonological posteriors as speech features.
Phonological posteriors consist of probabilities of phonological
classes estimated for every short segment of the speech signal.

PAoS encompasses lengthening of duration which is more
pronounced in vowels [1, 2]; we thus hypothesize that a small
subset of phonological classes provide stronger evidence for
duration and trajectory analysis. These classes are determined
through analysis of linear prediction coefficients (LPC). To en-
able trajectory analysis without phonetic alignment, we exploit
phonological structures defined through quantization of phono-
logical posteriors. Duration and trajectory analysis are con-
ducted on blocks of multiple consecutive segments possessing
similar phonological structures. Moreover, unique phonological
structures are identified for every severity condition.
Index Terms: Progressive apraxia of speech (PAoS), Phono-
logical posterior features, Phonological structures, Linear pre-
diction coefficient (LPC).

1. Introduction
Dysarthria and Progressive Apraxia of Speech (PAoS) are two
common speech motor disorders observed in neurodegenerative
diseases. While automatic processing (for assessment and as-
sistive applications) of dysarthric speech is getting considerable
attention in the speech community [3, 4, 5, 6], acoustic and au-
tomatic processing studies of PAoS are rather rare. It might be
due to increased complexity of speech degradations of patients
with PAoS, where production errors are more inconsistent and
unpredictable [7].

PAoS is a speech motor disorder associated to several neu-
ropathological conditions, which causes progressive degrada-
tion of the main speech characteristic and of speech intelligibil-
ity. The main symptoms of PAoS are phonetic distortions and
phonemic errors, groping and effortful speech initiation with
successive approximations, changes in inter- and intra-syllabic
transitions, increased syllabic duration and decreased speech
rate [6, 7].

PAoS has been associated with impaired phonetic encod-
ing (planning of speech gestures) rather than to impaired motor
execution [7, 2, 8]. Here we hypothesize that analysis of phono-

logical features extracted from the degraded speech signal could
contain clues for assessment of the progressive disruption and
severity levels of PAoS.

One particular contribution of this paper is selection of
phonological classes using linear prediction analysis of phono-
logical posteriors. In addition, we exploit phonological struc-
tures [9] to enable automatic analysis of duration and trajec-
tory without any need for automatic alignment. Prior work
on phonological structures demonstrate their relation to artic-
ulatory postures [9], thus considering the structure of multiple
consecutive segments enables quantification of the dynamic and
trajectory of articulatory movements and co-articulation. The
studies presented in this paper exploit this structural property
of phonological posteriors to obtain speech-based markers of
PAoS severity.

The results obtained in Section 5 demonstrate a significant
increase in duration and less consistency in articulatory move-
ments as the neuro-degeneration thrives. Furthermore, we iden-
tify unique structures per severity condition which indicates
that certain articulatory postures disappear in AoS progression
and are replaced by new postures and trajectory of movements.
This observation can lead to development of a novel auto-
matic assessment method relying on the nearest neighbor rule
of classification. Preliminary studies show the potential of this
method. However, recordings of many patients is required to
validate/endorse its usefulness for clinical applications.

To the best of authors’ knowledge, prior work on applica-
tion of phonological features for objective intelligibility predic-
tion of pathological speech considered statistical measures of
independent processing of segments of speech [10]. In contrast,
we propose ranking ad selection of phonological classes, and
we study the relation between adjacent segments, or trajectory
of articulation. The proposed approach provides simple objec-
tive tools that correlate with higher level speech production be-
haviors such as speaking rate and co-articulation without any
requirement for speech alignment.

The rest of the paper is organized as follows. Section 2
describes the data available from 3 assessment sessions of a pa-
tient diagnosed with isolated PAoS. This data is used for estima-
tion of phonological posteriors through the procedure explained
in Section 3. We used linear prediction analysis to rank the
phonological classes for trajectory analysis in Section 4. The
trajectory analysis methods are explained in Section 5 where
selection of phonological classes is found an effective approach
to obtain more distinct markers of severity. Moreover, distinct
structural patterns are observed for every severity condition.
This observation leads to devising a classifier for detection of
the level of severity which is elaborated in Section 6. The con-
clusions are drawn in Section 7.
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2. PAoS Data
The data used for evaluation of the methods proposed in this
paper consist in 3 recordings over A 28-months period of a
67 year-old french speaking woman diagnosed with isolated
PAoS. The patient has been recorded for about 2 minutes while
reading the same text (“La bise et le soleil” [11]). The total
duration is thus about 7 minutes. Across the 3 sessions the
severity of speech disruption progresses from mild, to medium
and to severe impairment according to clinical assessment by
speech and language therapists and to normative acoustic data.
Diadochokinetic rate assessed with standard diadochokinetic
tasks [12] and articulation rate are reported in Table 1.

Table 1: Clinical PAoS pattern: speech rate and diadochoki-
nesic rate (syll/sec) across the assessment sessions. The num-
bers in parenthesis shows the relative reduction in rates with
respect to the mild condition. The patient’s production im-
pairment in medium condition is assessed after 16 month from
the mild condition; the severe impairment is evaluated after 12
month from the medium condition.

Condition Mild Medium Severe
Articulation rate 2.73 2.39 (13%) 2.06 (25%)

Diadochokinesis rate 2.85 2.22 (22%) 1.58 (45%)

The clinical and acoustic durational measurements show
that this patient after 16 months from its initial mild AoS, ex-
hibits increased impairment where the articulation rate is de-
creased by 13% and diadochokinetic rate is decreased by 22%.
In the follow up assessment session after 28 months from the
diagnosis of mild AoS, the patient reaches more severe impair-
ment manifested in 25% reduction in articulation rate and 45%
reduction in diadochokinetic rate.

In the rest of the paper, our goal is to quantify speech mark-
ers that correlate with the clinical markers. Motivated from the
intuitive effects of PAoS on articulatory disruptions, and how
the clinical assessments quantify this impairment, we focus our
work on ranking and selection of speech representations, and
their evolution through time in trajectory analysis.

3. Phonological Structures
We use deep neural network (DNNs) to estimate the phonolog-
ical posterior features. As we have already seen in Section 1,
PAoS affects phonetic planning. Hence, phonological posteri-
ors are suitable representation of speech to enable assessment of
these patients. Moreover, phonological posteriors exhibit highly
constrained structures that are consistent for adjacent segments
and change according to the speaking rate. In the next Sec-
tion 3.1, we explain the framework for estimation of phonolog-
ical posteriors.

3.1. Phonological Posteriors

Figure 1 illustrates the process of the phonological analysis
[13, 14]. This process starts by converting a segment of
speech samples into a sequence of acoustic features X =
{x1, . . . ,xn

, . . . ,x
N

} where N denotes the number of seg-
ments in the utterance. Conventional cepstral coefficients
can be used as acoustic features. Then, a bank of phono-
logical class analyzers realized via neural network classi-
fiers converts the acoustic feature observation sequence X
into a sequence of phonological posterior probabilities Z =

Speech
Signal

Acoustic
Feature

Extraction

c1 : Anterior

ck : Coronal

cK : Strident

zn

Figure 1: The process of phonological analysis. Each segment
of speech signal is represented by phonological posterior prob-
abilities z

n

that consist of K class-conditional posterior prob-
abilities. For each phonological class, a DNN is trained to esti-
mate its posterior probability given the input acoustic features.
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)]> (1)

consists of K phonological class-conditional posterior proba-
bilities where c

k

denotes the phonological class and .> stands
for the transpose operator. The phonological posteriors Z yield
a parametric speech representation.

Phonological analysis was performed with the PhonVoc:
phonetic and phonological toolkit [16]. Probabilities of K =
24 phonological classes corresponding to the French version of
the Sound Pattern of English [14] were extracted from 25 ms
speech segments, using 10 ms steps [16].

3.2. Structured Sparsity

Phonological posteriors are indicators of the physiological pos-
ture of human articulation machinery. Due to the physical con-
straints, only few combinations can be realized in our vocaliza-
tion. This physical limitation leads to a small number of unique
patterns exhibited over the entire speech corpora [17]. We re-
fer to this structure as first-order structure which is exhibited
at segmental level. These structures can be quantified using bi-
nary (1-bit) quantization or finer quantization levels. We will
compare both binary (Q1) and 2-bit (Q2) quantization levels to
perform trajectory analysis in Section 5. We will see that binary
structures are the best level of structural definition.

In addition to the first-order structures, the dynamic of
the phonological posteriors can be quantified considering the
higher-order structure underlying a sequence (trajectory) of
phonological posteriors. This structure is exhibited at supra-
segmental level which is associated to the syllabic information
or more abstract linguistic attributes. We refer to this structure
as high-order structure.

Previously we have shown that the trajectories of the
articulatory-bound phonological posteriors correspond to the
distal representation of the gestures in the gestural model of
speech production (and perception) [9]. In this paper, we ex-
ploit these structures as markers for objective evaluation and
assessment of the level of severity of speech motor disorder in
patients diagnosed with progressive apraxia of speech. The de-
tails of our analysis are explained in Sections 5.

Unlike previous work on application of phonological pos-
teriors for assessment of pathological speech, we hypothesize
that not all phonological classes are equally important. In
other words, a small subset of phonological classes may pro-
vide stronger cues for diagnosis of the level of PAoS. This hy-
pothesis is supported by clinical investigations confined to the
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Figure 2: Ranking and selection of important phonological classes: The first coefficient of the linear prediction analysis [15] is
computed for the blocks of posteriors consisted on adjacent segments with similar binary structures. The average of the first LPC for
each phonological classes is calculated per recording session. Finally, the mean of class-specific LPCs are computed for all the session
and sorted. The classes with the highest mean values are considered as those contributing the most to the assessment of speech rate
and trajectory in PAoS. The top-4 classes are “Voiced”, “Vowel”, “Unround” and “Mid”. Considering the phonological-phonetic
mapping used for the neural network training [14], these classes capture phonological variation of vowel-like sounds (c.f. Table 2).

vowels and in particular lengthening of the vowels as the PAoS
thrives [1, 2]. In the next section, we elaborate on a method
for ranking and selection of phonological classes using linear
prediction analysis [15].

4. Selection of Phonological Classes
We hypothesize that phonological classes are not equally im-

portant for assessment of PAoS. The focus of the present work
is on trajectory analysis of phonological posteriors; hence, we
rely on linear prediction coefficients (LPC) to measure the de-
pendency and predictability of consecutive phonological poste-
riors.

4.1. Linear Prediction Analysis

The goal of linear prediction analysis is to minimize prediction
error of the current segment using the values of the posteriors
from the past consecutive segments. The predicted posterior at
segment n is thus obtained as

ẑ

n

=
PX

p=1

↵

p

�z

n�p

(2)

where ↵

p

=
⇥
↵1

p

. . . ↵k

p

⇤> is a K dimensional vector, and �
stands for element-wise product. The LPCs are estimated to
minimize the reconstruction error in mean square sense, i.e.
||ẑ

n

� z

n

||2.
The procedure for LPC analysis of phonological posteriors

and selection of the most important classes is as follows:

1. Blocking: The posteriors are analyzed in blocks of consecu-
tive segments which possess similar structures after quanti-
zation.

2. Class-specific LPC: The high-order LPC analysis is per-
formed where the LPC order is chosen as the block length,
i.e. number of segments.

3. Ranking: Means of the first LPC coefficient ↵1
p

for all blocks
and recording conditions are computed for every phonolog-
ical class. The means are then sorted and the classes which
exhibit largest means are considered as the most informative
classes for trajectory analysis.

Figure 2 illustrates the average value of the first LPCs for
each phonological posterior per recording sessions correspond-
ing to mild, medium and severe condition. The top-4 most im-
portant classes are identified as “Voiced”, “Vowel”, “Unround”
and “Mid”. We can see the consistent high value of LPCs esti-
mated for these classes throughout progression of AoS.

4.2. Phonological-Phonetic Importance of Vowels

To have a better understanding of what the selection of phono-
logical classes may imply, we refer to the phonological-
phonetic mapping used for neural network training in posterior
estimation [14]. Table 2 shows the mapping between selected
classes and phonemes associated with these classes.

Table 2: Association of selected French phonological classes
and phonemes. The French phoneme set is taken from
BDLex [18].

Class c
k

Phonemes

Voiced a ã 9 i y u e ẽ ø o õ O @ E œ œ̃ j l m 4 w b N ñ
n v g K d z Z

Vowel i y u e ẽ ø o õ @ E œ O a ã œ̃ 9
Unround a ã i e ẽ E 9

Mid ø ẽ e œ E

We can see that the selected top-4 classes capture phono-
logical variability of all vowel-like speech sounds (all vowels
and voiced consonants). This might indicate that vowel analy-
sis is more important in PAoS than the consonant analysis. This
observation is inline with the clinical assessment of PAoS [8].
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Figure 3: Relative increase in duration illustrated for (i) Q1
and Q2 quantizations to obtain phonological structures, and (ii)
when phonological structures are obtained from all (24) classes
vs. the case that only top-4 classes are used for duration model-
ing. We see clear benefit when Q1 binary structures are used for
duration analysis, and when we use the selective top-4 classes.
In the most distinctive case, using Q1 structure of top-4 classes,
we observe 43% increase in duration in medium AoS and 61%
increase in duration in severe AoS with respect to mild AoS (c.f.
Table 3).

5. Trajectory Analysis
Analysis of trajectory of phonological posteriors is performed
using three metrics defined through (5.1) Duration of phono-
logical structures, (5.2) Predictability of phonological classes
from the previous segments, and (5.3) Dynamic of posteriors
quantified through high-order structures underlying consecutive
segments.

Clinical assessment for diagnosis of PAoS asserts that
speaking rate is reduced and the control over muscle movements
is less consistent as the disease thrives [2, 8]. Accordingly, we
expect to see an increase in duration and less predictability from
mild to severe condition. Complying to the clinical emphasis
put on vowel analysis, focusing our analysis on top-4 classes
(c.f Table 2) is expected to be advantageous in distinction of the
severity conditions.

5.1. Structural Duration

Typically, duration analysis requires automatic alignment of
speech with the actual transcription using automatic speech
recognition (ASR). However, this can be a cumbersome method
that requires ASR resources and expertise. Moreover, automatic
alignment is affected by the ASR errors due to progressive mis-
match between the training and testing conditions.

To alleviate this limitation, we propose to use the phonolog-
ical structures for duration analysis. The structures are obtained
through quantization of posteriors, and they are often similar
for adjacent segments. As the phonological structures can be
related to the articulatory postures of speech production [9],
slower speaking rate indicates a slower dynamic in the struc-
tural changes.

Applying the same blocking procedure as explained in Sec-
tion 4, we quantify the structural duration as the average num-
ber of the segments in one block.

Different level of quantization can be applied to obtain the

Medium Severe

Relative reduction in the second LPC with respect to mild AoS.
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Figure 4: Relative reduction in the second coefficient of high-
order LPC analysis for (i) Q1 and Q2 quantizations to obtain
phonological structures, and (ii) when phonological structures
are obtained from all 24 classes vs. the case that only top-4
classes are used for duration modeling. In the most distinctive
case, using Q1 structure of top-4 classes, we observe 25% re-
duction in the second LPC in medium AoS and 38% reduction
in the second LPC in severe AoS with respect to mild AoS (c.f.
Table 4).

structures. We compare 1-bit (Q1) and 2-bit (Q2) quantization
in our studies. Furthermore, to see the effectiveness of working
on a small subset of phonological classes, we compare the re-
sults when the structures are obtained from all classes or only
from the top-4 most important classes.

The results are illustrated in Figure 3. More details are
listed in Table 3. We can see a clear benefit of binary structures

Table 3: Structural duration measured in terms of the average
number of segments in all blocks of similar structures. The num-
bers in parenthesis show the relative increase in duration with
respect to the mild condition.

Condition Mild Medium Severe
Q1 duration (all) 2.3 3.1 (27%) 3.6 (44%)
Q1 duration (top-4) 4.7 6.7 (43%) 7.6 (61%)
Q2 duration (all) 1.5 1.97 (24%) 2.2 (36%)
Q2 duration (top-4) 2.3 3.3 (41%) 3.6 (55%)

over the 2-bit quantization. Moreover, obtaining the structural
duration using a subset of most indicative phonological classes
leads to higher distinction across different PAoS conditions.

5.2. Long Term Dependency

Similar to the method explained in Section 4, the linear predic-
tion analysis is conducted on blocks of the same phonological
structures. We perform high-order LPC analysis where the or-
der is determined from the length of the block, i.e. number of
segments. We measure the mean of the second LPC for ev-
ery recording session. Less control over the muscle movement
leads to less consistency of the articulation trajectories. Figure 4
illustrates the relative reduction of the second LPC with respect
to the mild condition. The details of the results are listed in
Table 4.

It is evident that high-order dependencies are reduced. This
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Table 4: High-order linear prediction analysis: The values for
the second coefficient averaged for all segments are listed at
different recording sessions. The numbers in parenthesis show
the relative decrease in high-order dependency with respect to
the mild condition.

Condition Mild Medium Severe
Q1 LPC (all) 0.53 0.51 (1%) 0.48 (5%)
Q1 LPC (top-4) 0.22 0.17 (25%) 0.14 (38%)
Q2 LPC (all) 0.78 0.74 (4%) 0.75 (5%)
Q2 LPC (top-4) 0.61 0.54 (10%) 0.52 (13%)

effect is much more pronounced if we only consider top-4 most
important phonological classes (c.f. Table 2). Similar studies on
other LPCs larger than the second coefficient shows that those
values are very small and their changes are less distinctive for
PAoS objective evaluation.

5.3. High-order Structures

Relying on the relation between phonological structures and
articulatory postures, the dynamic/trajectory of articulation or
co-articulation can be quantified considering high-order struc-
tures [9]. To that end, we append consecutive phonological
posteriors to define the trajectories through quantization of aug-
mented posteriors. The number of consecutive posteriors deter-
mine the level (order) of trajectory structures. More specifically,
C adjacent posterior vectors are appended to define a new pos-
terior which encode C-order dynamic of features as

z

C

n

=
h
z

>
n

. . . z>
n+C

i>
. (3)

As the phonetic planning is disrupted in PAoS [8], we ex-
pect to see unique structures for distinct levels of severity. More
intuitively, certain articulatory postures can only occur at an
specific level of neurodegeneration.

The percentage of unique structures (number of unique
structures / number of all segments) is listed in Table 5. Further-
more, we quantify the percentage of structures that only occur
in one severity condition.

Table 5: Ratio of unique structures (%) per condition. The num-
bers in parenthesis show the ratio of the structures that only
occur in one particular condition, thus indicative of particular
articulatory posture that may only occur at a specific level of
impairment.

Condition Mild Medium Severe
Q1 structures 1-order 7.1 (32) 5.9 (29) 4 (36)
Q1 structures 2-order 28 (60) 21 (59) 17 (63)
Q1 Structures 3-order 44 (76) 34 (74) 28 (74)
Q2 structures 1-order 62 (90) 47 (88) 42 (90)

We can see that the number of distinct structures grow
rapidly as the order is increased. This demonstrates that the tra-
jectories of phonological posteriors exhibit more distinct prop-
erties as we consider larger context (C) or finer structures (Q2).

Nevertheless, even at a segment level (no augmentation,
C = 1), we can see a significant number of structures that only
occur in one specific severity condition: nearly 30% of struc-
tures are unique. This observation on structural differences mo-
tivates us to perform automatic assessment using nearest neigh-

bor rule of classification. The procedure is explained in the fol-
lowing Section 6.

6. Preliminary Automatic Assessment
To visualize the structural differences between phonological
posteriors across recording sessions, we used the t-distributed
stochastic neighbor embedding (tSNE) method [19] for visu-
alization of high-dimensional (posterior) features. Figure 5.2
illustrates the results. Phonological posteriors without augmen-
tation (C = 1 in (3)) are used for visualization. We contrast
the visualization of posteriors where all 24 classes are used vs.
only top-4 selective classes are considered. We can see that the
distinction in posterior distribution is well preserved.

Exploiting the structural differences enables us to perform
automatic assessment via classification. We consider the near-
est neighbor classification rule for this purpose. To that end,
we divide the data in two training and testing splits. Each test-
ing segment is independently labeled based on the label of its
nearest neighbor phonological posterior in the training set.

We use segmental posteriors without augmentation, i.e.
C = 1. The cosine similarity metric is used to find the near-
est neighboring vector which is defined as one minus cosine of
the angle between two vectors; mathematically, it is expressed
as

Scosine(z1, z2) = 1 �
P

k

zk

1 zk

2qP
k

�
zk
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�2 P
k

�
zk

2

�2
. (4)

where zk

1 denotes the kth element of posterior vector z1. This
metric has been found a suitable choice when comparing the
similarity of two posteriors vectors [20].

The segment-level labels are then pulled to make a decision
about the severity of articulatory disruption based on majority
voting. We observe that exploiting about 5 seconds for training
and testing data, enables us to perfectly classify the session of
recording. The training size in all severity conditions is equal.

This suggests that inter-patient PAoS severity might be au-
tomatically assessed using nearest neighbor classifier and the
phonological posteriors as speech features. Of course, this can
not be validated or endorsed clinically unless a sufficiently large
number of patients are recorded and used for exhaustive evalu-
ation of this method.

7. Conclusions
Trajectory analysis of phonological posteriors enables objective
assessment of progressive apraxia of speech. We demonstrated
that a selected set of phonological classes can be considered
as strong indicators of PAoS. In this paper, we performed lin-
ear prediction analysis to select the most important classes for
trajectory analysis. Interestingly, these classes highly correlate
with the clinical observation on importance of vowels in PAoS
diagnosis.

To enable trajectory analysis without any need for auto-
matic alignment of speech, we build on our previous work
on phonological structures obtained through quantization as a
method for quantifying the articulatory postures [9]. Our in-
vestigations on structural duration shows a significant increase
in duration if we consider mainly the top-4 important classes.
This observation is inline with the clinical evidence of speech
rate reduction more pronounced in production and lengthening
of vowels. This has been also verified in scientific studies using
acoustic analyses.
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Figure 5: tSNE visualization of (left) all phonological posteriors and (right) selected top-4 classes (c.f. Table 2).

Furthermore, high-order LPC analysis demonstrate a sig-
nificant decrease in consistency of phonological trajectories.
The dynamic of phonological posteriors can be quantified by
appending multiple adjacent phonological posteriors to form a
super-vector of multiple phonetic classes. This method enables
us to quantify the transitions or co-articulation among articula-
tory postures. The studies presented in this paper confirmed that
unique phonological structures are exhibited for every severity
condition. Exploiting this property can potentially enable us to
perform automatic assessment of the level of severity in PAoS.
Preliminary studies motivate us to explore this direction further.
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Abstract
Advances in text simplification depend on reliable judg-
ments of sentence difficulty. The ability of untrained na-
tive English speakers to judge sentence difficulty in the
presence of variation in semantic similarity is examined
using cloze tests and a forced-choice comparison task.
Judgments from participants in web-based experiments
demonstrate ability to assess sentence difficulty of profes-
sionally leveled sentence pairs with 84% accuracy. The
comparison task results suggest that participants’ ability
to judge comparative sentence difficulty is inversely re-
lated to semantic similarity; that is, contrary to our intu-
ition, speakers appear more accurate at judging sentence
difficulty for sentences that are dissimilar than for those
that are similar.

1. Introduction
Text simplification aims to expand access to textual in-
formation by algorithmically reducing the reading level
of text – ideally without changing its meaning. Under-
standing text simplification can help us to design or cus-
tomize tools for Augmentative and Alternative Commu-
nication (AAC) users, language learners, and other pop-
ulations who need better access to information including
the wealth of information available on the web.

Many approaches to simplification use statistical ma-
chine learning which depends on large corpora of text at
different levels. Of particular use, though still quite lim-
ited in size, are bi-text corpora; these corpora present the
same ideas in standard/simplified text pairs and have usu-
ally been created by aligning sentences from longer text,
e.g. [1]. Unfortunately, the paucity of simplified text data
has hindered most efforts to optimize machine learning
approaches to the problem [2]. This led us to consider
whether a necessary prerequisite for the identification of
simplified texts, namely reading level judgments, might
be more readily obtained from untrained native speak-
ers using crowd-sourcing methods such as Amazon’s Me-
chanical Turk.

Although professionals who create leveled readers are
able to write sentences, paragraphs, and entire book col-

lections at a pre-specified reader grade level, it is unclear
whether untrained native speakers can meaningfully as-
sess text difficulty, particularly of short texts. In addition,
when text is simplified, its content is necessarily trans-
formed, and judgments that compare the levels of two
similar sentences may be confounded by differences that
go beyond complexity differences, including substantial
semantic and syntactic variation unrelated to simplifica-
tion. Given the difficulty of the task, it appears doubtful
that untrained readers can reliably assign grade levels to
texts; however, such readers might be able to determine
relative difficulty of two sentences. If so, a comparison-
based task might enable a crowd-source approach much
like what underlies test similarity tasks like SemEval [3].

In this paper we report on experiments that seek to
discover whether native speakers can compare two sen-
tences and judge when one is “more difficult” than an-
other, despite other differences in syntax and semantics.
We expected to find that more similar sentences, hav-
ing fewer lexical and syntactic differences, thereby allow
greater focus on the features relevant to the task and thus
more accurate assessment of sentence difficulty. Leroy
et al. [4] assume that explicit judgments of difficulty are
possible, and refer to these explicit judgments, collected
from a population of participants, as “perceived difficulty,”
which they distinguish from ”actual difficulty.” Like these
researchers we use cloze measure scores to estimate ”ac-
tual difficulty,” but recognize that this simply measures
the predictability of words given sentence contexts. We
bring these two measures together by comparing cloze
scores with comparative judgments.

2. Related Work

Text simplification improves accessibility of written or
spoken language by transforming it to better meet the
needs of the reader, including those with cognitive and/or
linguistic challenges. The primary approaches to text sim-
plification, all of which remain open research problems,
include lexical and syntactic simplification, machine trans-
lation, and explanation generation [5]. For example, lex-
ical simplification has been used to reduce the size of an
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article’s vocabulary set to a smaller size that could de-
termine which icons to use in communication boards [6].
Text simplification also applies to spoken language [7],
and even non-linguistic media.

The present study focuses on the simplification of sin-
gle sentences. It is not self-evident that this is the best
level at which to study simplification: leveled readers, for
example, are often simplified at the document level with
transformations that restructure the linguistic presenta-
tion of ideas across paragraphs or sections. However, sev-
eral considerations suggest the sentence as a viable unit
of simplification. First, the sentence is a linguistic en-
tity that conveys a complete proposition, and it is shared
by all human languages. Sentence-level simplification
involves both lexical and syntactic transformations, and
even studies focused on word- or phrase-level transfor-
mations usually rely on delivery within a sentence con-
text. Finally, simplification approaches derived from sta-
tistical machine translation depend on sentences aligned
with their simplified counterparts, providing a basis for
machine learning [1, 8].

A major challenge to the development of usable sim-
plification is a clearer understanding of the factors that in-
fluence perception of text difficulty. That is, the creation
of reliable automated text simplification algorithms de-
pends on being able to detect whether text has been sim-
plified! Lasecki [9] demonstrated that judgments from
untrained native speakers can be used to assess sentence
level along a 7-point Likert scale. In this case, the authors
assumed that sentence simplicity is correlated with the
number of simplifying transformations applied to a com-
plex sentence. Many other studies also rely on comparing
sentences that are semantically related, perhaps derived
from the same original complex sentence. For example,
[10] demonstrated a positive effect of lexical simplifica-
tion using pairs of lexically simplified sentences. One
objective of our study was to determine the degree to
which semantic similarity affects simplicity judgments,
since text simplification often introduces significant se-
mantic changes.

3. Background

This section provides background concerning three top-
ics central to our methods: measures of readability, em-
pirical measures of difficulty, and algorithmic measures
of sentence similarity. To contextualize this discussion,
consider a sample task from our comparison experiment
shown in Figure 1. In these sentence pairs the first pair
is considered semantically similar and second pair dis-
similar. (Additional sentence pairs from our experiments
appear in the appendix.) Each pair of sentences is drawn
from texts at different author-identified reading levels and
cloze scores were used as an alternate measure of actual
reading level.

3.1. Measures of Reading Level

Measuring the reading grade level and readability of text
is important to writers of educational materials. Dubay
[11] reports that from 1940 to the 1980’s, approximately
200 readability formulas appeared in the literature. Many
of these formulas use simple surface measures such as
word count, word length, syllable count, average sylla-
bles per word, etc. to estimate sentence readability. As
one example, the widely-used Flesch-Kincaid Grade level
score is given by

grade = 0.39
nw

ns
+ 11.8

n�

nw
� 15.59

where ns, nw, and n� are the number of sentences, words,
and syllables, respectively. The result is intended to be
interpreted as a grade level; thus a text written for begin-
ning readers would score roughly 1, with more complex
texts assigned higher scores.

Most formulas are intended to measure the level of
longer passages, not single sentences. Fry [12] notes that
most formulas require at least 300 words. He proposes
a formula for 40-99 words of three or more sentences,
but observes that for shorter texts this formula is unre-
liable. The feasibility of determining readability based
exclusively on surface level measures is limited, leading
some researchers to explore models that incorporate se-
mantic content.

3.2. The Cloze Measure as Actual Difficulty

The cloze measure estimates text difficulty by relating it
to the ease with which a missing word can be guessed
from its context [13], usually a text of several paragraphs.
In most cloze experiments every N th word – where N
is generally 5-7 – is replaced by a blank. When human
subjects guess the missing word with roughly 60% accu-
racy or greater, the text is considered relatively easy. Hu-
man prediction of a word based on surrounding context
is reminiscent of the goal of language models based on n-
grams: both human and algorithm rely on context to pre-
dict a most likely word. Smith and Levy [14] compared
a 5-gram continuation (cloze) task in which participants
completed a short phrase with corpus statistics derived
from Web 1T and scanned books. They found that cloze
scores varied substantially from corpus statistics.

One challenge in this project is how to assess the “true”
difficulty of a sentence, against which to compare human
perceptions or ratings. Leroy et al. [4] differentiates im-
plicit tests of text difficulty based on cloze tests or tests
of comprehension from explicit reports based on com-
parison or Likert-scale judgments by participants. The
authors call the former actual difficulty and the latter per-
ceived difficulty. We adopt the same terminology in this
paper, acknowledging that the cloze score is merely our
best approximation to actual difficulty.
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Similar S: North of Cairo, Egypt, the Nile enters the region called the delta.
C: North of Cairo the Nile enters the delta region, a level triangular lowland.
SEMILAR score: 0.883

Dissimilar S: Fish come from the sea or from fish farms.
C: Small clustered fishing villages are found along the coastline.
SEMILAR score: 0.349

Figure 1: Example sentences; in each pair, the simpler sentence is marked with S. See appendix for more.

3.3. Semantic Similarity of Sentences

We employed the SEMILAR Toolkit [15] to measure the
semantic similarity of sentence pairs. We measured the
semantic similarity of each sentence pair using SEMI-
LAR, with word similarity measured by LSA using the
TASA model provided with the SEMILAR download.
This variant of SEMILAR was selected based on em-
pirical tests of several similarity measures as applied to
three datasets: O’Shea [16], Sem* STS 2012 [17], and
Sem* STS 2013 [3]; it scored the closest to human judg-
ments for all three. The sentence pairs used in this study
were selected to be of similar length. Thus sentence pairs
with high semantic similarity are likely to share numer-
ous similar word pairs, whereas sentences with low se-
mantic similarity are likely to have a large number of
word-to-word differences.

4. Methods
The sentences used for all experiments were drawn from
Brittanica School articles. Topic-matched articles from
Level 1 (elementary school level) and Level 3 (high school
level) were mined to find sentence pairs differing markedly
in difficulty, one drawn from each level. Aligned sen-
tences extracted from these articles were retained only if
their lengths (in words) differed by less than 20% to avoid
confounding effects. For each topic, at most one sentence
pair was retained in order to avoid semantic contamina-
tion across different sentence pairs. Sentence pairs were
chosen to provide a group of highly similar and highly
dissimilar sentences. The SEMILAR score falls in the
range of 0.0 to 1.0, with 1.0 meaning identical sentences
and 0.0 meaning no similarity. In order to facilitate com-
paring results on high similarity pairs vs. low similarity
pairs, sentence pairs were ranked according to SEMILAR
scores; the pairs falling in the 85-87.5th percentile and the
12.5-15th percentile were used in these experiments. The
low-similarity pair SEMILAR scores ranged from 0.0 to
0.36; the high-similarity pair SEMILAR scores ranged
from 0.83 to 0.97.

All experiments were run using a custom, web-based
LimeSurvey [18] redirected from Amazon Mechanical
Turk. Participants were paid a small amount for complet-
ing the experiment. The first two questions were “dummy”
questions, with responses collected but not analyzed. The
third question was designed with an unambiguous cor-

rect answer, and any participant who answered this incor-
rectly was not allowed to proceed with the experiment, to
eliminate inattentive subjects. Demographic information
was collected, and participants were told that only na-
tive English speakers could participate. In addition, each
participant was asked about current English usage, e.g.
whether they primarily or exclusively spoke English in
their home.

5. Cloze Experiment
A total of three paired cloze experiments were run, mak-
ing a total of six different sets of sentences, each of which
was completed by twenty participants. Each experiment
pair used the same set of 38 sentence pairs, which were
taken from topic matched, level-differing articles as de-
scribed above. The sentence pairs were divided into tasks
A and B, such that for each sentence pair, the Level 1 sen-
tence was randomly assigned to either task A or B, and
the Level 3 sentence assigned to the other. Every seventh
word in each sentence was deleted, starting at a speci-
fied position in the sentence: the fourth in the first experi-
ment pair, the third in the second experiment pair, and the
fifth in the third experiment pair. Participants provided
responses to only one of the six different tasks and sen-
tence order was randomized for each participant. A par-
ticipant’s response was considered correct only if it was a
case-insensitive exact match. In total, participants pro-
duced 8,160 individual cloze responses, approximately
68 words per participant.

5.1. Cloze Results

Our sentences have an average of 12.8 words; a sentence
will have one to four blank cloze positions on any trial.
The proportion of a sentence’s blanks correctly filled in
by all participants, its cloze score, is highly variable, since
scores depend largely on whether the cloze position hap-
pens to fall on an easily guessed word. To overcome this
source of noise we average scores for each sentence over
the three different blank positions and call this the aver-
age cloze score. The distribution of average cloze scores
for all sentences shown in Figure 2 suggests that sentence
difficulty is quite variable (x = 0.42; � = 0.17).

The original sentences were drawn from texts at ele-
mentary (Level 1) and high-school (Level 3) grade levels.
The average cloze scores of sentences drawn from texts
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Figure 2: Histogram of average cloze scores for sen-
tences. Averages are over three different initial positions
in each sentence, with that and every seventh subsequent
word deleted.

at the elementary (49.3%) versus those at the high-school
level (35.2%) are significantly different (p < 0.0001;
t = 4.05), reflecting agreement between professional lev-
eling of the articles and sentence difficulty as estimated
by the cloze measure.

Given this result, we might ask whether other mea-
sures, such as unigram frequency or common readabil-
ity measures show greater agreement with professional
judgments of reading level than cloze scores do. To ex-
plore the utility of unigram frequency, word probability
for each cloze word was estimated from the Web1T cor-
pus. Unigram probabilities and average cloze scores have
a correlation of r = 0.506, indicating some shared infor-
mation. We then evaluated the ability of a logistic regres-
sion model to predict reading level based on both average
cloze scores and unigram probabilities. Only the average
cloze score is a significant (p < 0.001) predictor of level,
suggesting that average cloze scores are superior predic-
tors compared to unigram frequency.

The readability measures we examined, Flesch-Kin-
caid grade level and Lexile Score, do not generate signif-
icantly different values for Level 1 versus Level 3 sen-
tences. The Flesch-Kincaid grade level has often been
used to measure text difficulty, even in single sentences
[4, 10]. Average Flesch-Kincaid grade levels are 7.2 and
8.6 for the Level 1 and 3 sentences, respectively; how-
ever, this difference does not reach significance (p =
0.11). This result is consistent with findings of Leroy et
al. [10] who found that Flesch-Kincaid grade level did not
differ significantly for sentence pairs that had been lexi-
cally simplified. We obtained similar results when using
Lexile scores; we note that Lexile is intended for much
longer texts. In this case average Lexile Scores [19] were
897.9 and 932.9 for Levels 1 and 3, respectively. The
scores, grouped by reading level, were not significantly
different (p = 0.55). Thus cloze scores better predict
reading level than either unigram frequency or these read-

Figure 3: Average comparison accuracy per participant.
Comparison is correct if Level 1 is judged simpler than
Level 3.

ing level measures.

6. Comparison Experiment
The sentence comparison task tests whether participants
are able to compare two sentences and determine which is
simpler, despite variation in semantic similarity. Each of
the 38 randomly ordered sentence pairs was presented in
turn to the participant. The order in which the Level 1 and
Level 3 sentences were presented was also randomized as
the experiment was run. The forced-choice task requires
participants to select the less difficult of two sentences.

6.1. Comparison Results

Using author-assigned text level to measure sentence dif-
ficulty, 27 of 29 participants responded above 60% cor-
rect. The scores of two participants were markedly lower
outliers, within 5% of chance; thus, their results are re-
moved from subsequent analysis. The mean score for the
remaining 27 participants was 72.1% (Figure 3).

Using author-assigned text level as the measure of ac-
tual sentence difficulty, the per-sentence comparison ac-
curacy results are shown in Figure 4. 84.2% (32/38) of
sentence pairs had comparison judgments consistent with
the author-assigned reading level; that is, the Level 1 sen-
tence was more often labeled simpler than the Level 3
sentence. If instead we use the average cloze scores as
the measure of actual sentence difficulty, only 76.3% (29
of 38) of comparison judgments match.

There are nine sentence pairs for which participants
had better cloze accuracy on the Level 3 sentence than
on the Level 1 sentence, which is not the expected result.
This may, in part, be an artifact of having used only three
of the possible seven initial positions for deleting words;
in some sentences the deleted words may have been the
hardest or easiest to guess. Another potential explanation
is that the reading level of individual sentences may not
always reflect the reading level of an entire text; a com-
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Figure 4: Histogram of per-sentence average comparison
accuracy.

plex text may contain relatively simple individual sen-
tences. In selecting our experimental data, we assumed
that sentences drawn from a text reflected the level of that
text. The variation of average cloze scores and the varia-
tion in comparison scores both suggest that text level and
sentence level are not in complete agreement.

6.2. Combined Results

The primary focus of this study was to determine whether
the comparative difficulty of sentences can be assessed
without regard to semantic or syntactic differences. The
sentence pairs in this study belong to one of two groups:
high similarity or low similarity. We compared the degree
to which comparison scores agreed with author-assigned
reading level for the high similarity (67.7%) versus low
similarity (77.0%) groups; a t-test indicates that the com-
parison scores for these groups are not significantly dif-
ferent (p = 0.158; t = �1.44). That is, the ability
of participants to compare sentence level was not sig-
nificantly affected by the semantic and syntactic differ-
ences between those sentence pairs. However, when we
compared the degree to which comparison scores agreed
with comparative average cloze scores, the high similar-
ity pairs average 58.4% versus 75.7% for low similar sen-
tence pairs (one-tailed, t = �2.12, p = 0.02), reaching
significance. Surprisingly, whether we assess actual sen-
tence difficulty based on average cloze score or on author-
assigned level, lower semantic similarity appears to aid
the ability to judge comparative sentence difficulty.

Although not a simple linear relationship, the relation
between perceived and actual difficulty shown in Figure 5
suggests that the ability to judge differences in sentence
difficulty improves as cloze difference between two sen-
tences increases.

Other factors that have been shown to be related to
perceived difficulty include function word density, the oc-
currence of difficult words as measured by Dale-Chall,
and noun-phrase complexity [4]. We measured noun-

Figure 5: Scatter plot of percent correct perceived diffi-
culty vs. absolute difference in average cloze.

phrase complexity using the maximal depth of all noun
phrases in a sentence. Function word density was based
on English stopwords listed in NLTK. A multiple regres-
sion test including these variables, average cloze scores,
and ratios of cloze scores was performed. The overall
adjusted R-squared value was 0.17 (p = 0.12). The
only significant variable was the Dale-Chall score of the
difficult sentence (p = 0.05). The average cloze score
of the Level 1 sentence had the next smallest p-value
(p = 0.10). We have found no variables that are sig-
nificant predictors of perceived difficulty scores.

7. Discussion
One goal of this study was to determine whether sentence
level judgements of untrained native speakers could be
used to replace professional judgments of sentence diffi-
culty. Experience with simplifications in the Simple En-
glish Wikipedia suggests that non-professional simplifi-
cation is much less reliable than that obtained from pro-
fessionals [2]. However, [9] showed that crowd-source
methods could accurately rate the number of simplifying
transformations made to single complex sentences. These
results, from a slightly smaller set of sentences, are most
directly comparable to the results reported above. Note
that in [9] sentence simplicity was based on a count of
transformations to a base sentence and did not incorpo-
rate the wide variation in semantic similarity we inves-
tigate here. Our cloze results support the claim in [9]
that untrained speakers can implicitly judge sentence dif-
ficulty in agreement with expert judgments, but imper-
fectly so. Moreover, perceived difficulty, as measured by
the sentence comparison task somewhat similar to that
in [9], is not clearly related to cloze scores on the same
sentences. This suggests that actual and perceived diffi-
culty do not measure identical sentence attributes. Addi-
tionally, neither directly represents the benefit in compre-
hension that such a simplification might afford the reader.
The best metric for measuring text difficulty depends on
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the task, and the field has not settled on a clear method-
ology for such measures.

Our unexpected finding that comparing sentence dif-
ficulty is improved by semantic dissimilarity is one that
must be more carefully studied. Semantic priming pre-
sents one possible explanation. By this account, when
participants are presented with a sentence pair, the second
sentence may seem easier because the first sentence has
semantically primed the participant for the second sen-
tence. Of course, this is likely to be a much stronger ef-
fect for semantically similar sentences. If so, we would
predict that there may be a consistent bias toward under-
estimating the complexity of the second sentence in high-
similarity pairs. Unfortunately, our experimental design
was such that the order in which the two sentences were
presented was randomized for each participant at run time,
and the order of presentation was not recorded. Thus the
experimenters cannot assess whether such a bias actually
was observed.

7.1. Crowd-sourced Effort to Judge Difficulty

One advantage of both the cloze procedure and the forced-
choice comparison task is that they can be undertaken
by readers of a language with very little training and are
therefore suitable for crowd-sourced data collection. The
comparison task requires a single decision that ranks one
sentence relative to another. By contrast, the cloze proce-
dure requires multiple lexical inputs, but it yields a per-
centage cloze score that provides a total order for all sen-
tences. Which approach is best?

In cases where experimenters desire a total order over
a particular set of sentences, a simple analysis provides
a means to compare the effort required for each of these
two methods. If we have n sentences of average length
m, the comparison task is essentially sorting by binary
decisions and will provide a total order of the sentences
with nlog(n) comparisons. Assuming we must provide
blanks on approximately half of the words to estimate the
cloze score, the cloze Procedure will require m

2 ⇥n blanks
to be completed by a set of participants. Thus, the number
of inputs provided by participants is numerically similar
when log(n) = m

2 . For sentences of about 20 words, this
implies n ⇡ 1024. That is, the comparison procedure
will require fewer human decisions until approximately
1000 sentences are to be completely ordered. Note that
this ignores the relative difficulty of, and time required to
make, comparison vs. word-choice decisions.

In this study, the cloze procedure provided a total or-
der using about 210 word choices per participant, but
took significantly more effort for both participants and
the experimenters. In contrast, the comparison task re-
quired only 38 comparisons per participant but was not
designed to provide a total order. If a total order is de-
sired, further comparison tasks might be generated for
additional test subjects, guided by an O(nlog(n)) sort-

ing algorithm such as mergesort.

7.2. Conclusion

The methodology by which sentence difficulty is mea-
sured has direct consequences for the creation of corpora
(e.g., [20, 8, 1, 10]) underlying future development of
text simplification. The genesis of this project was the
authors’ awareness of the need for more bi-text data at
different levels of reading complexity, which might hypo-
thetically be used to train machine translation systems to
perform text simplification, or to train systems that mea-
sure text readability. Naive users could presumably judge
relative readability more easily and more quickly than
they could perform cloze exercises. If their judgments
were sound, then one might use crowdsourcing to effi-
ciently sort sentences by readability. Our results indicate
that there is no need to match the sentences by content or
even by topic; in fact, it appears be an advantage not to
do so. Future research should clarify whether this is more
generally true.

8. Appendix: Sample sentence pairs
Sample high-similarity pairs
S: The two openings in the nose are called nostrils.
C: The external openings are known as nares or nostrils.
SEMILAR score: 0.828

S: Northern Ireland is often called Ulster because it in-
cludes six of the nine counties that made up the ancient
kingdom of Ulster.
C: Northern Ireland is sometimes referred to as Ulster,
although it includes only six of the nine counties which
made up that historic Irish province.
SEMILAR score: 0.869

S: Four main aerodynamic forces act on an airplane in
flight.
C: An aircraft in straight-and-level unaccelerated flight
has four forces acting on it.
SEMILAR score: 0.843

Sample low-similarity pairs
S: Guglielmo Marconi was an Italian scientist and inven-
tor.
C: Marconi’s great triumph was, however, yet to come.
SEMILAR score: 0.010

S: Unlike many plants, cacti do not have deep roots.
C: The fruit is usually a berry and contains many seeds.
SEMILAR score: 0.013

S: In nearly all mammals, the female carries the devel-
oping young in her body after mating.
C: The winter dormancy of bears at high latitudes is an
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analogous phenomenon and can not be considered true
hibernation.
SEMILAR score: 0.113
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Abstract
The demand for intensive and costly speech therapy to patients
impaired by communicative disorders can potentially be alle-
viated by developing computer-based systems that provide au-
tomatized speech therapy in the patient’s home environment.
In this paper we report on research aimed at developing such
a system that combines serious gaming with automatic speech
recognition (ASR) technology to provide computer-based ther-
apy to dysarthric patients. The aim of the serious gaming en-
vironment is to increase the patients’ motivation to practice,
which tends to decrease over time with conventional speech
therapy, as progress in dysarthric patients is often slow. Addi-
tionally, some speech exercises (e.g. drills) are not particularly
motivating due to their repetitive nature. The ASR technology
is aimed at providing feedback on speech quality during train-
ing to improve speech intelligibility. Different types of acous-
tic models were trained on normal speech of adults and elderly
people, and tested on dysarthric speech. The results show that
speaker-adaptive training and Deep Neural Networks (DNN)-
based acoustic models substantially improve the performance
of ASR in comparison to traditional GMM-HMM-based meth-
ods. In this specific case, the ASR-based game is developed to
provide speech therapy to dysarthric patients, but this approach
can be adapted for use in other types of communicative disor-
ders.
Index Terms: communicative disorders, speech therapy, seri-
ous gaming, ASR.

1. Introduction
Among the problems that are likely to be associated with an
increasingly ageing population worldwide is a growing inci-
dence of neurological disorders such as Parkinson’s Disease
(PD), Cerebral Vascular Accident (CVA or stroke) and Trau-
matic Brain Injury (TBI). Possible consequences of such dis-
eases are communicative disorders. One of them is dysarthria,
a motor speech disorder that affects speech intelligibility and
causes communication problems [1]. Face-to-face speech ther-
apy has proven beneficial for improving speech intelligibility in
dysarthric patients, but to be effective therapy should be inten-
sive [2, 3, 4, 5]. Owing to the increasing number of patients and
the related high expenses, it may become difficult to provide in-
tensive care in the future. As a result, attempts are being made at
finding alternative, sustainable solutions that can guarantee the
amount of care that is required for dysarthria patients in addi-
tion to or even without face-to-face sessions [6, 7]. In analogy to
applications for pronunciation improvement in second language
learning, [8, 9, 10], computer-based systems that employ ASR
technology can be used to provide dysarthric patients with more
robust and focused practice. A compounding problem however
is that progress in these patients is slow, which is likely to re-
duce their motivation to practice. So one of the challenges is to

develop systems that can motivate patients to get the necessary
amount of practice. This can be achieved by resorting to games,
which are known to increase motivation in learners and patients
[11]. This aim is pursued in the CHASING project1, in which a
serious game employing ASR is being developed and evaluated
to provide additional speech therapy to dysarthric patients.

In this paper we report on research that we conducted to de-
velop and optimize this ASR-based game. Although we briefly
refer to the process of game development and optimization, the
emphasis is mainly on developing the ASR technology to be
integrated in this game. The remainder of the paper is orga-
nized as follows. Section 2 briefly summarizes related work on
game-based and ASR-based speech therapy. Section 3 presents
the architecture of the ASR-based game. Section 4 describes
the methodology adopted in experiments aimed at investigating
how ASR can be improved to be incorporated in the game. Sec-
tion 5 reports on the results of these experiments, while Section
6 presents a discussion of the results and the conclusions

2. Games and ASR for speech therapy
Neurological disorders like PD, stroke or TBI manifest more
frequently at later ages (e.g. 55 or above), although these dis-
orders sometimes may also occur at a younger age. Our re-
search focuses on developing and evaluating an ASR-based se-
rious game for providing speech therapy to elderly individuals
with dysarthria, because these constitute the majority of the pa-
tients’ group. Krause et al. [12] reported of work in this di-
rection. They developed a game that challenged patients with
PD to break glasses and vases by producing sufficiently loud
and long /a/-phonemes. The game aimed to improve the re-
duced voice intensity of the patients that were reported to have
a mild form of dysarthria. Speech processing algorithms suf-
ficed to provide real-time feedback on the current and desired
intensity only. An initial evaluation of the game was conducted
with eight patients. Significant improvements of average peak
voice loudness were observed in comparison with previously
calibrated limits to those measured during game play.

Outside of academic research, similar types of games al-
ready existed: Dr. Speech2 and VoxGames 3. These games
targeted children with varying speech disorders. RodrÃguez
et al. [13] describe a set of small games named ‘PreLingua’.
These games were intended to assist the work in speech ther-
apy focussing on deviations in phonatory related speech dimen-
sions. The aim was to improve the use of voice activity, inten-
sity, breathing, tone and vocalization of children with develop-

1See http://hstrik.ruhosting.nl/chasing/. Last retrieved on June 24,
2016.

2See http://www.drspeech.com/SpeechTherapy5.html, last retrieved
on March 25th, 2016.

3See http://www.ctsinf.com/english/#voxGames.html, last accessed
on March 25th, 2016.
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mental disorders. Speech processing algorithms were utilized to
analyse children’s voices and control interactive elements in the
games. Although the games were in use at a school for special
education and were positively evaluated by a group of speech
therapists, no evidence related to the efficacy of the games was
reported.

Bunnell et al. [14] described work that included games and
ASR technology. Their STAR system was intended for chil-
dren with articulation disorders who practiced speech produc-
tion starting with CV syllables progressing to words/phrases.
Hidden Markov Models (HMMs) were trained on children’s
speech and evaluated on speech of children substituting /w/ for
/r/. The results reported in their research showed that the log
likelihoods from the HMMs correlated well with the perceptual
ratings collected for utterances that contained substitutions, but
poorly for correctly pronounced examples.

Vaquero et al. [15] introduced a set of small games named
‘Vocaliza’ as an addition to the previously described PreLin-
gua. ASR technology was used to recognize the words children
spoke while completing speech exercises. The novel addition
was the utilization of ASR-based utterance verification (UV)
technology to detect mispronunciations in a child’s speech on a
word level by calculating a confidence measure based on likeli-
hood ratios. Similar to their research describing PreLingua, no
results on performance evaluation were reported.

In a collaboration with Yin [16], they introduced mispro-
nunciation detection at a phoneme level and obtained 6.7% ab-
solute improvement in Equal Error Rate (EER) when replac-
ing their baseline speaker-independent acoustic models with
speaker-adapted models. In [17] they reported results on mis-
pronunciation detection on both word and phoneme levels.
They showed that their word-level pronunciation verification
system in Vocaliza was rather unreliable for speech therapy due
to a trade-off lowering the False Rejection Rate (FRR), at the
cost of increasing the False Acceptance Rate (FAR). This lim-
ited frustration to the user, but at the same time accepted many
mispronounced words. Their phoneme-level mispronunciation
detection method did not show this trade-off and obtained con-
siderable improvements in EER (i.e. equal FRR and FAR per-
centage). Additionally, further improvements in detecting mis-
pronunciations were reported by fusing prior knowledge of the
target word, target phoneme and its position in the word with
the obtained posterior probabilities using MultiLayer Percep-
tron Neural Networks (NN-MLP).

Notable is also the study by Tan et al. [18] in which they
combine word-level articulation exercises with popular game-
play (i.e. Pac-Man) employing an off-the-shelve ASR package.
Feedback on the user’s pronunciation was provided by trigger-
ing a predefined action in the game if a word was recognized
and by displaying the recognized word and its corresponding
confidence score at the top of the game screen. Evaluation took
place using an informal play test with two children. Noteworthy
observations are that the ASR package, not adapted to speech of
children, frequently did not recognize their correct pronuncia-
tions of the target words. However, the children appeared to stay
engaged and interested and continued playing. This may point
to a certain level of tolerance for recognition errors, before a
user gets frustrated.

As the previous paragraphs show, most research involving
ASR-based games for speech therapy was aimed at disordered
speech of children. In our research we developed a game aimed
at elderly patients with dysarthric speech. To the best of our
knowledge, this has not been done before. In addition to voice
intensity in Krause et al. [12], our game also employs speech

processing algorithms to provide real-time feedback on funda-
mental frequency (F0). We are currently researching strategies
to also add feedback on pronunciation to the game. This strat-
egy potentially consists of two phases that both employ ASR
technology for pronunciation evaluation: utterance verification
and pronunciation error detection. For the utterance verifica-
tion phase we need to recognize the user’s utterance. Mustafa
et al. [19] provide an interesting overview of previous research
on ASR for dysarthric speech. In section 4 we report on our ini-
tial recognition experiments that include dysarthric speech from
our target group. Some previous research on pronunciation er-
ror detection in elderly dysarthric speech has been conducted
[20, 21], but this addressed dysarthric speech due to different
etiologies.

In the introduction we argued that serious games can in-
crease patients’ motivation for speech therapy. It is therefore
important to limit potential sources of frustration in the game.
Utterance verification and pronunciation error detection tech-
nology could be a source of such frustration, because it is not
guaranteed that the patient’s utterance is always recognized. In
previously described research, patients potentially had to say
the same utterance multiple times if it was not recognized by
the system, before they were able to continue. This causes frus-
tration to the patient and potentially lowers motivation. Ele-
ments in the gameplay should therefore not completely rely on
the outcome of ASR technologies. A nice example is perhaps
the game in Tan et al. [18]. The patient was only rewarded with
a ‘power up’ if the associated word was recognized, but could
still continue playing the game normally if this was not the case.

In the next section we outline our current game and briefly
describe our ideas for integrating gameplay elements that do not
fully rely on the outcomes of ASR technology.

3. The CHASING game for ASR-based
speech therapy to dysarthric patients

In the CHASING project a serious game has been developed
that Dutch-speaking dysarthric patients can play with their
friends and relatives. The choice of the game was based on
user tests in which several game concepts had been proposed
and evaluated. An important aspect in this respect was whether
the game should be a single player game or a multiplayer game.
A single player game has the advantage that it can be played
independently by a patient, without having to rely on other par-
ticipants. On the other hand, multiplayer games are generally
more engaging and motivating and are therefore likely to be
played more frequently, which is of course very important for
the therapy to be effective. The patients in our focus group
showed a clear preference for multiplayer games and indicated
that finding players would not be a problem as these could be
their friends and relatives. Further tests with initial versions of
the game revealed that additional considerations had to be made
for the intended target group of elderly people who are no expe-
rienced gamers. For instance, it turned out that it was necessary
to proceed more gradually both in introducing new game ele-
ments and in advancing to higher levels of difficulty. Moreover,
the use of direct visual feedback was found easier to interpret
as opposed to indirect feedback integrated into the gameplay.
This is potentially due to diminished cognitive skills as an ad-
ditional consequence of their neurological disorder. The game
that was eventually selected and developed is called ‘Schatzoek-
ers’ (i.e. ‘Treasure hunters’). It is a two-player cooperative
game in which players talk to each other through an audio con-
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nection and have to help each other in finding the treasure and
the key to open it. One player, the ‘digger’, can dig up the trea-
sure on land and the other, the ‘diver’, dives in various rivers
and canals in search for the key to open it. The locations of
both treasure and key are marked on the map, but only the ‘dig-
ger’ can see the location of the key (where the ‘diver’ should go)
and only the ‘diver’ can see the location of the treasure (where
the ‘digger’ should go). The players thus have to explain to
each other where to go. This way, players are encouraged to
keep speaking to each other to describe where they are on the
map and giving directions where the other should go. Figure
1 shows the tablet set up for which the game was developed.
Figure 2 displays a screenshot of the game.

Figure 1: The tablet set up displaying the start screen of the
game.

Every map in the game is a different level. Levels of dif-
ficulty are influenced by the size and layout of the map, the
complexity of street names and icons to describe one’s location,
the availability of an overview map and its level of detail. In
the initial levels, your location is also visible to your co-player,
in addition to the location of the item you need to find. That
visibility is removed in later levels. Players talk to each other
using the headset and get feedback on their loudness of voice
and pitch from the game, especially when they are above or
below specified thresholds. This is indicated by the horizontal
green bar shown in Figure 2, which provides real-time feedback
while the patient is speaking and shows a green, orange or red
color when the loudness of the patient’s speech is within, near
or below the threshold, respectively. When the pitch is too high
a notification slides down from underneath the bar instructing to
‘speak loud and low’. The therapeutic goals of the game are to
motivate dysarthric individuals in using continuous speech, and
to speak up and maintain predefined levels of pitch and loud-
ness.

In addition to feedback on loudness and pitch, our idea is
to incorporate ASR technology in the game to be able to auto-
matically provide more robust and focused feedback on speech
quality. An initial idea to integrate this into the gameplay is to
present the user with passphrases that have to be uttered, before
the treasure is opened in the game. The user is always rewarded
with treasure, but potentially depending on the level of speech
quality determined by the ASR, the user may be rewarded with
different kinds and/or amounts of treasure.

In the preparations for providing this type of feedback using
ASR, we developed an ASR architecture that runs on a server
in the cloud. Every time the game authenticates to this server, a
separate ASR session is initialized which is only available to the

Figure 2: An in-game screenshot displaying the game from the
perspective of the player ‘digger’. In the partially blue square
it can be observed that the, ‘diver’ already reached the correct
location of the key.

user who requested it. The audio containing the player’s speech
is then continuously streamed to the server for offline analysis
later on. As we have to handle privacy sensitive data, all com-
munication with the server happens over secured connections.

We are currently developing and optimizing the ASR tech-
nology for the game and this work has to be done while the
game is still being developed, improved and finalized. This
means, among other things, that we cannot test the technol-
ogy on the actual speech that will be produced in the game.
A compounding problem in developing ASR applications for
pathological speech is the limited availability of sufficient rep-
resentative data. Since this was all anticipated, we started ex-
perimenting with already available speech data that can be con-
sidered representative for the type of speech that will have to
be dealt with in the game (see section 4.1). Initial experiments
were run to investigate to what extent ASR performance can be
improved by speaker-independent Subspace Gaussian Mixture
Model-Hidden Markov Models (SGMM-HMMs) and speaker-
adaptive Deep Neural Networks (DNNs) in comparison to the
traditional system using speaker-adaptive GMM-HMMs.

4. ASR experiments for the CHASING
game

The ASR module in the CHASING game has to process
dysarthric speech which is notoriously more difficult to recog-
nize than normal speech. One of the obstacles in developing
ASR technology that can handle dysarthric speech is the lim-
ited amount of dysarthric speech data available for training and
testing the ASR algorithms. To partly circumvent this problem
experiments were conducted in which maximum use was made
of existing databases.

To investigate the baseline performance of the deep neural
network-based acoustic models on dysarthric speech, we per-
formed recognition experiments on a similar type of speech in
Flemish which is a variety of the Dutch language spoken in
Flanders. This choice is motivated by the availability of a prin-
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cipled Flemish pathological speech database, namely the CO-
PAS database [22], and the phonetic similarity between the two
varieties Flemish and Dutch.

4.1. Speech databases

Within the framework of the CHASING project, a database of
dysarthric speech is being collected [23], but this corpus is still
relatively limited. For Dutch another, larger corpus of patho-
logical speech has been collected [22], which also contains a
considerable number of recordings of dysarthric speech. Al-
though this database was compiled in Flanders and contains
speech of patients who speak the Southern variety of Dutch
(Flemish), it can be useful to investigate the baseline perfor-
mance of the deep neural network-based acoustic models on
dysarthric speech. First, the two varieties of Dutch spoken in
the Netherlands and in Flanders are mutually intelligible and the
most important phonological and phonetic differences are well
known. Second, developing and testing the ASR on Flemish
speech material makes it more feasible to adapt the CHASING
game for Flemish patients at a later stage.

4.1.1. Training Data

Since the idea was to investigate the performance of the deep
neural network-based acoustic models on Flemish dysarthric
speech, Flemish speech data were used for training. These were
obtained from the Flemish components of two Dutch and Flem-
ish speech databases, i.e. CGN [24] and JASMIN-CGN [25].
The Flemish CGN component contains recordings of standard
Flemish as spoken by adults in different regions of Flanders.
The components with read speech, spontaneous conversations,
interviews and discussions were used for training the acous-
tic models. The total duration of the normal Flemish speech
(FLN) used in the recognition experiments is 186.5 hours. Ad-
ditional speech material was taken from the Flemish component
of the JASMIN-CGN corpus, which is an extension of the CGN
database with speech of children non-natives and elderly peo-
ple. The elderly speech component, with a total duration of
approximately 5 hours, was employed in our experiments.

4.1.2. Testing Data

The COPAS pathological Flemish speech database [22] was
used for testing the acoustic models trained on various speech
types described in the previous section. The COPAS database
has been collected within the framework of the SPACE project
which was aimed at developing a reliable ASR-based speech
assessment tool for pathological speech. This speech database
contains recordings of 122 normal speakers as a control group
and 197 speakers with speech disorders such as dysarthria, cleft,
voice disorders, laryngectomy and glossectomy. The speech
material includes not only word reading tasks, but also isolated
sentence and short passage reading tasks.

The word reading tasks used in this paper is the Dutch In-
telligibility Assessment (DIA) [26] material which contains 35
versions of 50 consonant-vowel-consonant (CVC) words and
pseudowords organized in 3 subgroups. Moreover, we added
all sentence reading tasks with annotations. These include 2
isolated sentence reading tasks (S1 and S2), 11 text passages
(S) of reading difficulty levels AVI 7 and AVI 8 according to a
system adopted in the Dutch language area that indicates read-
ing difficulty based on text structure, vocabulary and length of
words and sentences, and varies from AVI 1 up to AVI 9, and a
phonetically balanced text known as Text Marloes (TM) [27].

For the recognition experiments, we classified the afore-
mentioned material based on the type of speaker (normal vs.
pathological) and speech material (word vs. sentence) resulting
in 4 test sets. The speech segments in which the speaker does
not utter the target word are discarded to be able to evaluate
the recognizer errors only. There are 687 different words and
212 different sentences in the test data. The test set containing
the word tasks uttered by normal speakers (WN) and speakers
with disorders (WD) consists of 6154 and 8648 utterances with
a total duration of 1.5 and 2 hours, respectively. The test set
containing the sentence tasks uttered by normal speakers (SN)
and speakers with disorders (SD) consists of 1918 (15,149) and
1034 (8287) sentences (words) with a total duration of 1.5 and
1 hour, respectively.

4.2. Implementation Details

The recognition experiments are performed using the Kaldi
ASR toolkit [28]. The standard training recipe provided for
multiple databases is applied to train a conventional context-
dependent GMM-HMM on MFCC, LDA-MLLT and FMLLR-
adapted features. Then, a system using an SGMM-based [29]
acoustic model is also trained with a universal background
model having 800 Gaussians and substate phone-specific vector
size of 40. Providing the best performance among the afore-
mentioned recognizers, this system is used to obtain the state
alignments required for DNN training.

For DNN training, a standard feature extraction scheme is
used by applying Hamming windowing with a frame length of
25 ms and frame shift of 10 ms. The DNNs with 6 hidden layers
and 2048 sigmoid hidden units at each hidden layer were trained
on the FMLLR-adapted features. The DNN training is done by
mini-batch Stochastic Gradient Descent with an initial learning
rate of 0.008 and a minibatch size of 256. The time context size
is 11 frames achieved by concatenating ±5 frames. Unigram
language models were trained on the target word transcriptions
and used in the word recognition tasks. For the sentence recog-
nition tasks, trigram language models were trained on the target
sentence transcriptions.

5. Results and Discussion
We performed ASR experiments using the speech data de-
scribed in Section 4.1. The recognition results obtained on
the word and sentence tasks uttered by normal and pathologi-
cal speakers from the COPAS database are presented in Table
1. For each column, the best results are marked in bold. In the
context of the proposed serious game, sentence recognition is a
more relevant task compared to isolated word recognition. For
completeness, we present both word and sentence task results
in this section.

Table 1: Word error rates in % obtained on the word and sen-
tence COPAS test sets

Acoustic models WordDys WordNor SentDys SentNor
GMM+MFCC 76.2 55.0 37.3 13.3
GMM+LDA-MLLT 73.8 51.6 36.7 11.7
GMM+FMLLR 66.2 41.0 27.8 7.8
SGMM 59.2 34.0 23.6 5.7
DNN+FMLLR 56.2 30.2 23.6 4.2

The conventional GMM-HMM trained on Mel Frequency
Cepstral Coefficients (MFCCs) provides a WER of 37.3% on
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the dysarthric sentence utterances and a WER of 76.2% on the
dysarthric word tasks. The WER difference between the normal
and dysarthric speakers on the two tasks is larger than 20% for
this system. The high WERs on the word tasks were due to the
challenging recognition of one-syllable words and phonetically
similar pseudowords. By using LDA-MLLT the WERs were
reduced slightly as the second row in Table 1 shows.

Using discriminately trained features and including speaker
information by applying speaker adaptive training (SAT) fur-
ther reduced the WERs to 27.8% and 66.2%. Compared to
GMM+LDA-MLLT, this is an absolute improvement of 8.9%
and 7.6% on sentence and word tasks, respectively. The
dysarthric speech recognizer benefits considerably from the
speaker adaptive training.

Training SGMM-based acoustic models improves the
recognition accuracy on the two tasks to a WER of 23.6% for
sentence recognition and 59.2% on word recognition tasks. The
DNN-based recognizer provides a similar performance with the
SGMM-based recognizer on the sentence recognition task. An
absolute improvement by 3% is obtained using DNNs on the
word recognition task.

By using state-of-the-art DNN-based acoustic models it
was possible to substantially lower the WERs, especially for the
sentence task. In practice, we could lower the WERs even more,
by using simpler tasks (exercises) with less complex language
models. For instance, we could elicit speech in such a way that
the number of possible correct answers is low, and then the ASR
only has to determine whether one of these answers was spoken.

6. Conclusions
In this paper we have reported on our research aimed at devel-
oping an ASR-based game that can provide speech therapy to
dysarthric patients with Dutch as their mother tongue. In par-
ticular, we have described experiments in which different types
of acoustic models trained on normal speech were tested on
dysarthric speech. The results show that speaker-adaptive train-
ing and Deep Neural Networks (DNN)-based acoustic models
substantially improve the performance of ASR in comparison
to traditional GMM-HMM-based methods.

Considering that the performance can further be improved
by adopting more specific tasks in the game, as discussed in the
previous section, we can conclude that the levels of accuracy
obtained in these experiments bode well for the deployment of
ASR in speech therapy applications. The experiments reported
on in this paper were conducted on dysarthric speech of a close
variety of Dutch, i.e. Flemish. Given that data sparsity is one
of the major obstacles in developing ASR-based speech ther-
apy applications, employing speech data of a closely related
language variety is a possible way of approaching this prob-
lem. In the near future we intend to conduct similar experiments
with dysarthric speech of the Northern variety of Dutch. How-
ever, since developing ASR-based speech therapy applications
is very costly, it is important to know to what extent they are
portable to other language varieties, so that more patients can
profit from them.

Finally, we would like to underline that although in this spe-
cific case the ASR-based game has been developed to provide
speech therapy to dysarthric patients, this approach can be eas-
ily adapted for use in other types of communicative disorders.
To conclude, these results thus indicate that employing ASR
technology for speech therapy to patients with communicative
disorders is becoming more viable. In turn, this will allow them
to get more intensive therapy, also in their home environment.
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Abstract
Impulse-sequence representation of the excitation source com-
ponent of normal speech signal has been of considerable inter-
est in speech coding research. If a similar representation can
be made for nonverbal (i.e., nonnormal or nonneutral) speech
sounds, that would immensely help in their acoustic analyses
and diverse applications. This paper proposes a representa-
tion of the excitation source characteristics of nonverbal speech
sounds signal, in terms of a time-domain sequence of impulses
or impulse-like pulses. The nonverbal speech sounds are ex-
amined in three categories, namely, emotional speech, paralin-
guistic sounds and expressive voices. This categorisation is pro-
posed, based upon the degree of rapid changes in pitch of these
sounds. A modified zero-frequency filtering (modZFF) method
is proposed for obtaining an impulse sequence representation of
the excitation source component in the acoustic signal of non-
verbal speech sounds. Effectiveness of the proposed representa-
tion is validated by analysis-by-synthesis approach and percep-
tual evaluation for Noh singing voice signals. This representa-
tion may also be helpful in significant savings in the terms of
signal storage and processing requirement, apart from analysis
and speech coding of the nonverbal sounds.
Index Terms: nonverbal speech sounds, impulse sequence rep-
resentation, modified zero-frequency filtering, speech coding

1. Introduction
Assistive technologies can be developed using acoustic cues,
that are produced by the human speech production mecha-
nism. For example, analysis of cough sounds may help med-
ical experts in the diagnosis of the type of ailment, the type
of infant cry may indicate to mother the cause of cry, or the
Unh/Ahan/Hum/Laugh sounds may indicate to psychologists
the attention level or attitude etc. Thus there can be a vast range
of clinical or other applications possible, in assistive or augmen-
tative roles, using signal processing methods on the acoustic
signals of such sounds. But the methods that work well for nor-
mal speech, may not work for such sounds. Hence, there is need
to develop appropriate signal processing methods, characterize
these sounds and develop the systems for assistive applications.

Human speech sounds can be classified into verbal and non-
verbal sounds. Verbal speech is normal speech that consists
of phonation and linguistic sounds, and mostly follows syntax
rules. An articulatory description exists for these reproducible
sounds. Nonverbal speech sounds carry nonlinguistic informa-
tion that may be more effective in communication. For example,
accent, native dialect, attitude, gestures, moods (interested or
indifferent), emotions (happy, sad, angry etc.), articulation and
identity. No clear description of articulation exists for these.

Their production is mostly involuntary and spontaneous. Based
upon the content (verbal/nonverbal), production (involuntary or
controlled) and intelligibility, these can be categorised as: emo-
tional speech, paralinguistic sounds and expressive voices [1].

Emotional speech consists of linguistic content and com-
municates either emotions (shout, anger, sad, fear, happy etc.)
or affective states (boredom, interest, surprise etc.). Paralin-
guistic sounds consist of mostly nonlinguistic content (laughter,
cry, cough, sneeze, yawn etc.) and communicate a speaker’s
emotional state or some acoustic-physiological event. These
sounds may occur as interspersed with normal speech. Ex-
pressive voices (e.g., Opera or Noh singing) consist of mostly
nonverbal (singing) sounds, mixed with little linguistic content.
These are specially trained artistic voices, whose production is
voluntarily controlled and involves rapid changes in their exci-
tation characteristics [1]. Noh is a Japanese performance art,
that involves high emotional expressivity in singing voice [2].
However, these terminologies proposed by the author, may have
overlapping semantics and preferences amongst researchers.

Nonverbal speech sounds have few common characteristics.
These are nonsustainable (i.e., occur for short bursts of time),
nonnormal (i.e., deviations from normal), form a continuum
(are nondiscrete) and indicate humaneness (help distinguishing
between a human and a humanoid). Analysing their production
characteristics is a challenging task, because significant changes
occur in their excitation source characteristics. An effective rep-
resentation of their source characteristics can help in a range of
applications, such as spotting these in continuous speech, event
detection, classification, speaker identification, man/machine
discrimination and speech synthesis etc. [3, 4, 5, 6, 7].

Research challenges unique to nonverbal speech sounds
can be related to production, databases and classification.
Production-specific challenges relate to their spontaneity and
production-control. Databases issues relate to their contin-
uum nature, quality of emoting and reference. Classification
issues relate to discriminating between normal-nonverbal, spot-
ting nonverbal sounds (in continuous speech) and identifying
its category. The nonverbal and normal speech sounds seem
to differ in their production characteristics. For example, non-
verbal sounds occur in short-bursts of time, with significant
changes in their excitation source characteristics and possibly
associated changes in the vocal tract system characteristics. Sig-
nal processing methods that work well for analysing the nor-
mal speech, have limitations for nonverbal speech sounds [1].
Hence, how to derive the excitation source characteristics from
the acoustic signal for nonverbal speech sounds, is a challenge.

Impulse-sequence representation of the excitation was at-
tempted in speech coders for achieving low bit-rates of cod-
ing and natural-sounding voice quality of synthesized speech.
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Speech coders can be categorised as waveform coders, vocoders
and hybrid codecs. Waveform coders [8, 9] aimed at mimicking
the speech waveform, to the best possible extent. Vocoders [10,
11] used linear prediction (LP) coding [12, 13] or residual-
excited LP (RELP) [14] that lead to the development of code-
book excited LP (CELP) [15] codecs. Hybrid or analysis-by-
synthesis codecs aimed at achieving intelligible speech with
bit-rates  4 kbps. Excitation source information was repre-
sented using multi-pulse [9, 16, 17, 18], regular-pulse [19], or
CELP [15] sequences. These approaches differed in estimating
the pulse position, amplitude or phase. Hence, how to represent
that excitation source information in terms of a time-domain se-
quence of impulses for nonverbal sounds, is second challenge.

Production of normal speech sounds reflects the differences
in the locations of excitation impulses and their relative ampli-
tudes [20]. For example, in fricative sounds the impulses occur
at random intervals with amplitudes of low strength, but for the
vowel-like regions these impulses occur at nearly regular inter-
vals with smooth changes in their amplitudes [21]. In the pro-
duction of nonverbal speech sounds, these impulses are likely
to occur at rapidly changing intervals, with significant changes
in impulse amplitudes. For example, expressive voices (e.g.,
Noh singing) have aperiodicity in the excitation component due
to unequal intervals between successive impulses and unequal
strengths of excitation around these [20]. Production of nonver-
bal speech sounds also involves the amplitude and frequency
modulation related to the voluntary pitch-control or other invol-
untary changes, whose effect on the pitch perception could be
significant [22]. Hence, the third important question is - how to
determine the locations and amplitudes of the impulses that rep-
resent the excitation source information in nonverbal sounds?

This paper explores answers to these three key questions.
The excitation source characteristics is represented in terms of a
time-domain sequence of impulses, with their relative strengths.
The impulse-sequence representation for normal speech can be
obtained using the zero-frequency filtering (ZFF) [23, 24]. But,
when pitch period changes rapidly, the ZFF method needs to be
modified, in order to capture the subtle variations in the excita-
tion characteristics. These may be related to irregular intervals
between epochs and varying strengths of the impulses, e.g., in
laughter [25] or expressive voices [20, 22]. Shorter window
lengths ( one pitch period) may highlight more information
for signals having rapid pitch variations, but it is difficult to in-
terpret few epochs sometimes. In order to eliminate the need for
selecting an appropriate window length and also to minimize its
effect on the derived impulse sequence for nonverbal speech
sounds, a modified zero-frequency filtering (modZFF) method
is proposed. Analysis-by-synthesis approach is adopted for val-
idating the effectiveness of the proposed representation.

This paper is organized as follows. Section 2 reviews exist-
ing methods for representing the excitation source information
in normal speech. The proposed modZFF method for nonverbal
speech sounds is described in Section 3. Representation of the
excitation source characteristics of different nonverbal speech
sounds is discussed in Section 4. Validation of the proposed
method is carried out in Section 5, using analysis-by-synthesis
approach. Section 6 gives a summary and scope of further work.

2. Existing methods for normal speech
Excitation source characteristics in normal speech signal was
extracted using different approaches in speech coding methods.
(a) Waveform coders used transform coders [13], pulse-code
modulation (PCM), differential PCM, delta-modulation [8] or

adaptive predictive coding [26], to reproduce the speech with
high voice quality and minimum distortion. But speech cod-
ing bit-rate was high (� 16 kbits/sec). (b) LPC Vocoders used
LP coders (all-pole filters) [13], voice-excited vocoders with
pulse-sequence/noise for voiced/unvoiced excitation [27], or
RELP vocoders with LP residual for the excitation [14]. Aim
was to reduce coding bit-rate  2.4 kbits/sec with intelligible
speech, but it was not natural-sounding. (c) Hybrid (analysis-
by-synthesis) codecs [9, 28, 29, 30] aimed at high intelligibility
of synthesized speech with coding bit-rate  4.8 kbits/sec.

Hybrid codecs have two parts, encoder and decoder [28].
Encoder consists of synthesis filter, error-weighting and error-
minimisation blocks. It analyses each 20 ms frame of signal
s(n) by synthesizing multiple approximations to it, and then
transmits to decoder the synthesis filter parameters and the ex-
citation sequence u(n). Decoder synthesizes the signal s̃(n),
by passing the excitation u(n) through a synthesis (all-pole) fil-
ter H(z) = 1

A(z) , with A(z) = 1 �
P

p

i=1 a
i

z�i as prediction
error filter [9, 28]. Excitation u(n) can be chosen in 3 ways, to
give minimum weighted-error e(n) between the original s(n)
and the synthesized speech s̃(n). Multi-pulse excited codecs [9]
model the ideal excitation by 8 nonzero pulses for every 10 ms
frame, and use suboptimal methods to determine pulse posi-
tions and amplitudes. Regular-pulse excited (RPE) codecs [19]
use nonzero pulses (regularly spaced at fixed interval) for ex-
citation, needing to determine only the first pulse position and
amplitudes of all pulses. CELP codecs [15] use for excitation
an entry in a vector quantized code-book and a gain term, with
low bit-rate. MPE codecs have lesser computational complexity
than RPE codecs.

2.1. All-pole model of excitation in LPC vocoders

(i) Generic pole-zero model [31]: For a discrete time-series sig-
nal s[n], the system output is predicted from past outputs and

present inputs, as s[n] = �
pX

k=1

a
k

s[n�k]+ G

qX

l=0

bl u[n�l],

where b0 = 1, a
k

are system parameters, G is gain and u[n]
the unknown input sequence. Taking its z transform, we get

H(z) = G
(1+

Pq
l=1 b

l
z

�l)

(1+
Pp

k=1 ak z

�k)
, where H(z)

⇣
= S(z)

U(z)

⌘
is trans-

fer function of the system, i.e., the general pole-zero model,
U(z) is z transform of u[n] and S(z) is z transform of s[n].

(ii) All-pole model [32, 31]: Signal given by past output
values and input u[n] is s[n] = �

P
p

k=1 a
k

s[n�k]+ G u[n],
where G is gain. Taking its z transform, we get H(z) =

G

(1+
Pp

k=1 ak z

�k)
, where H(z) is an all-pole transfer function.

(iii) Method of Least Squares [31]: For unknown input
u[n], the output can be predicted as s̃[n] = �

P
p

k=1 a
k

s[n �
k], and error (residual) is given by e[n] = s[n] � s̃[n] =
s[n] +

P
p

k=1 a
k

s[n � k]. A solution to this excitation rep-
resentation problem is multi-pulse excitation (MPE) model [9].

2.2. MPE model of the excitation

In MPE, an all-pole LPC synthesizer filter H(z) is excited by a
sequence of pulses at positions t1, t2, ..., tn

, ... with amplitudes
↵1, ↵2, ..., ↵n

, ... [9]. This desired impulse-sequence (d[n]) ex-
cites the filter to produce synthesized output s̃[n]. It is passed
from a low-pass filter to produce the reconstructed speech ŝ(t).

(i) Determining the MPE input to the LPC all-pole synthesis
filter H(z): The desired MPE (d[n] =

P1
k=� 1 r[k] h[n�k])

is determined by modeling the LPC residual r[n], to minimize
the weighted-mean square error ✏ computed from the difference
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e[n] between original speech s[n] and synthesized speech s̃[n].
(ii) Transfer function of error-weighting filter [9]: The

frequency-weighted error is ✏ =
R

fs

0
|S(f) � Ŝ(f)|2W (f)df ,

where S(f) and Ŝ(f) are Fourier transforms of s(t) and ŝ(t),
respectively, and W (f) is a weighting function. Transfer func-

tion of error-weighting filter is W (z) =
(1�

Pp
k=1 akz

�k)
(1�

Pp
k=1 ak�

k
z

�k)
.

Parameter � controls the error weight, i.e., W (z) = 1 � P (z)
for � = 0, and W (z) = 1 for � = 1, (typically � = 0.8).

(iii) Key objective in MPE-LPC model [33]: To find a se-
quence u[n] and filter parameters {a

k

}, so as to minimize the
perceptually weighted mean-squared error ē2[n] w.r.t. the ref-
erence s[n]. Synthesized signal s̃[n], for predictor order p, is
s̃[n] =

P
p

k=1 a
k

s̃[n�k]+u[n]. To minimize the mean-squared
error ē2[n] =

P
n

(s[n]� s̃[n]), different approaches determine
the amplitudes and positions of impulse-like pulses in u[n].

2.3. Estimating the amplitudes of pulses in MPE

(i) Sequential pulse placement (no re-optimization) [29]: The
mean-squared weighted error for N

p

excitation pulses is ē2 =P
n

(d
n

�A
m

h
n�m

)2, where h
n�m

is response of filter H(�z)
for the first impulse at position m with amplitude A

m

. The
desired excitation is d[n]. The optimal pulse amplitude is
Â

m

=
P

n dnhn�mP
n hn�ihn�j

. Denoting the vector of cross-correlation
terms in numerator by ↵

m

and matrix of correlation terms in de-
nominator by �

ij

, the optimal amplitude is Â
m

= ↵m
�mm

, where
↵

m

=
P

n

d
n

h
n�m

and �
ij

=
P

n

h
n�i

h
n�j

. Now error

ē2 =
P

n

d2
n

� ↵

2
m

�mm
depends on only position m of the pulse.

Best position for a pulse is for that m, for which ↵

2
m

�mm
is maxi-

mum. Optimal position for next pulse is d0
n

= d
n

� Â
m

h
n�m

,
and ↵0

m

= ↵
m

� Â
m̂

�
m̂m

. Likewise, positions and amplitudes
for all pulses can be found sequentially.

(ii) Re-optimization after having ‘all’ pulse positions [29]:
Using limits of error ē2 as �1 to +1, the optimal pulse am-
plitude Â

m

depends on best pulse-position m, for which |↵
m

|
is maximized and �

mm

is minimized. Mean square error for all
n

p

pulses, after getting positions upto m
i

, is ē2 =
P

n

(d
n

�P
np
i=1 A

mihn�mi)
2. Differentiating it w.r.t. all pulse ampli-

tudes A
mi , we get

P
n

(
P

np
i=1 h

n�mi .
P

np
i=1 h

n�mi .Ami) =P
n

(d
n

P
np
i=1 h

n�mi). Replacing the cross-correlation terms
↵

mi and correlation terms �
mimi , we get a set of simultane-

ous equations:
⇥
�

mimj

⇤ ⇥
Â

mi

⇤
=

⇥
↵

mi

⇤
, where i, j =

1, 2, ..., n
p

, Â
mi is optimal amplitude at position m

i

and n
p

is number of pulses in N samples block. It can be solved by
Cholesky decomposition of the correlation matrix of elements
�

ij

. Pulse-amplitude re-optimization can be carried out after
having ‘all’ pulse positions [29] or ‘each’ pulse position [34].

2.4. Estimating the positions of pulses in MPE

(i) Pulse correlation method [29]: Best location for an excita-
tion pulse is m, at which the amplitude Â

m

is optimal and error
ē2 minimum. Impulse response of the synthesis filter H(�z)
dies-off quickly due to the factor �, hence this part can be trun-
cated. In autocorrelation analysis the correlation term (�

ij

) is
generated by filtering {h

n

}, using recursive synthesis filter. In
covariance multi-pulse analysis the correlation {�

ij

} is defined
recursively as �

i�1, j�i

= �
ij

+ h
N�i

h
N�j

. Initial cross-
correlation �

ij

can be computed using synthesis filter ({d
n

}).
(ii) Pitch-interpolation method [28]: In this, the pulse-

position is obtained by interpolating the pitch-period, to min-

imize the error ē2[n]. Synthesis filter parameters {a
k

} are used
with an error weighting filter H(�z), to reduce the perceptual
distortion. Use of maximum cross-correlation ↵

m

gives the op-
timum location m

i

of ith pulse, determined by finding maxi-
mum absolute amplitude A

m

for pulse at location m
i

. A
mi =

↵hs(mi)�
Pi�1

j=1 Amj .�hh(|mj�mi|)
�hh(0) , where 1  m

i

, m
j

 N ,
N is number of samples, and ↵

h

(m
i

) is cross-correlation be-
tween weighted speech s[n] and impulse-response h[n � m].
The �

ij

is autocorrelation of response h[n � m], and A
m

are
amplitudes of pulses determined upto ith location. The correla-
tion terms ↵

hs

and autocorrelation terms �
hh

are: ↵
hs

(m
i

) =P
n

s[n]h[n � m
i

], �
hh

(ij) =
P

n

h
n�mihn�mj .

(iii) SPE-CELP method [30]: It uses single-pulse excitation
(SPE) instead of multi-pulse, in a pitch-period. The CELP cod-
ing [15] does not provide appropriate periodicity of pulses in
synthesized speech for bit-rates  4 kbits/sec, because small
code-book size and coarse quantization of gain factor cause
large fluctuations in the spectral characteristics between two pe-
riods. In SPE-CELP [30] a LP coder first classifies speech into
periodic and non-periodic intervals, then non-periodic speech is
synthesized like in CELP coding [28]. Periodic speech is syn-
thesized using single-pulse excitation, and using an algorithm to
determine the pitch-markers in short blocks of periodic speech.

Speech coding methods have focused at representing the
excitation information in normal speech signal in the terms of
a sequence of impulse-like pulses, either to reduce the bit-rate
of speech coding or to increase the voice quality of synthesized
speech. This impulse-sequence representation of the excitation
information for nonverbal speech sounds is not yet attempted,
to the best of our knowledge. It is proposed in the next section.

3. Proposed method for nonverbal sounds
Speech coding methods focus at representing the excitation in
terms of a sequence of impulse-like pulses, for normal speech.
An impulse-sequence representation of the excitation informa-
tion for nonverbal sounds signals is proposed in this section.

The ZFF method [23, 24] has two limitations when applied
for deriving the impulse sequence representation for nonverbal
speech sounds: (i) shorter window length would be required for
trend removal and (ii) impulse sequence for aperiodic signals
may be affected by the choice of shorter window length. Both
these limitations are addressed in the recently proposed modi-
fied zero-frequency filtering (modZFF) method by using gradu-
ally reducing window lengths, instead of a fixed window length,
for the trend removal operation [22]. Key steps involved in the
proposed modZFF method are as follows:

1. Preprocess the input signal (s[n]) by downsampling it to
8 kHz, smoothen over m sample points and then upsam-
ple back to original sampling frequency (f

s

) of signal.
2. Get differenced signal (x̃[n]) from the pre-processed sig-

nal (s
p

[n]), to further obtain a zero-mean signal (x̂[n]).
3. Pass this x̂[n] through a cascade of two ideal digital res-

onators at 0 Hz, i.e., y[n] =
P4

k=1 a
k

y[n � k] + x̂[n],
where a1 = +4, a2 = �6, a3 = +4, a4 = �1.

4. Remove the trend in output of the cascaded ZFRs (y[n]),
using gradually reducing windows of lengths 20 ms,
10 ms, 5 ms, 3 ms, 2 ms and 1 ms in successive stages, by
subtracting the local mean, in order to highlight the ex-
citation source information in the signal better. Output
of each stage (window size of 2N + 1 sample points) is
ŷ[n]) = y[n] � ȳ[n], where ȳ[n] = 1

2N+1

P
N

n=�N

y[n]
is the local mean computed over the window. The re-
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Figure 1: (a) Emotional (anger) speech signal (for text “your”) and (b) excitation impulse sequence from modZFF output.

Figure 2: (a) Paralinguistic sounds (2 laugh calls) signal waveform and (b) excitation impulse sequence from modZFF output.

sultant final trend removed output is called the modified
zero frequency filtered (modZFF) signal (z

m

[n]) [22].
5. The positive to negative going zero-crossings of the mod-

ZFF signal (z
m

[n]) give locations of impulses (epochs).
6. The slope of the modZFF signal (z

m

[n]) around each
of these locations indicates relative strength of excitation
(SoE) there, and amplitudes of impulses in the sequence.

This sequence represents the excitation source characteristics.
The preprocessing step used here for down-sampling to 8 kHz
and then upsampling back to the original sampling frequency
helps in reducing the number of spurious impulses [22]. The lo-
cations and amplitudes of the impulses in SoE based impulse-
sequence representation obtained for nonverbal speech sounds,
using this modZFF method are not sensitive to the choice of last
window length in 1.0 ms to 2.5 ms range [22].

The modZFF method helps deriving the impulse sequence
to represent the excitation source component of nonverbal
speech sound signal, with negligible spurious impulses. But
this sparse representation leads to significant savings in terms
of storage space and processing requirement.

4. Representing the source characteristics
The modZFF method helps deriving the impulse sequence rep-
resentation of the excitation source component of nonverbal
sounds signals. The amplitudes of impulses are the SoE at the
respective impulse locations. Excitation impulse sequences ob-
tained for anger (emotional speech), laughter and cry (paralin-
guistic sounds), and Noh singing (expressive voices) are illus-
trated in figures Fig. 1(b), Fig. 2(b), Fig. 3(b) and Fig. 4(b),
respectively. It may be observed from these figures that the
impulse sequence representation of the excitation source com-

Table 1: Average savings in the terms of storage space: i.e., (%)
of sample points saved, for different nonverbal speech sounds.

Sl.# (a) Acoustic Sound Type (b) Saving (%)
1. Emotional speech 97.44
2. Paralinguistic sounds 98.82
3. Expressive voices 99.19

Average 98.48

ponent in acoustic signals for different nonverbal (nonnormal)
sounds seem to have adequate number of impulses and no spu-
rious impulses (i.e., noise-like small magnitude impulses). This
indicates efficacy of the modZFF method in obtaining the exci-
tation impulse sequence for nonverbal speech sounds. Similar
excitation impulse sequences are obtained for the other semi-
natural/natural data [35, 25, 2] used in this study.

This proposed representation of the excitation source infor-
mation also results in the savings of storage space, as given in
Table 1. Savings in the terms of average number of sample
points, is computed for 3-5 files of each of the three types of
acoustic signals of nonverbal speech sounds examined in this
study. The results appear interesting. The relative space saving
(like compression) is less (97.44%) for emotional speech, more
(98.82%) for paralinguistic sounds, and further more (99.19%)
for expressive voices. It could possibly be related to the relative
presence of linguistic speech content and expressivity.

5. Validation by analysis-by-synthesis
Effectiveness of the proposed impulse sequence representation
of the excitation source information in nonverbal speech sounds
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Figure 3: (a) Paralinguistic sounds (infant cry) signal waveform and (b) excitation impulse sequence from modZFF output.

Figure 4: (a) Expressive voices (Noh singing) signal waveform and (b) excitation impulse sequence from modZFF output.

is validated using analysis parameters’ based synthesis and per-
ceptual listening tests. Nonverbal sounds signals for the Noh
singing voice are synthesized, by exciting the original vocal
tract system characteristics with four different excitation. Three
impulse sequences, having impulses at actual intervals, with
(i) unit amplitude of impulses (UImps), (ii) amplitudes as per
Liljencrants-Fant model between impulses (LF Model), and
(iii) respective SoE amplitudes of impulses (SoEImps) are used
for the excitation. In the 4th case, LP residual (LPRes) is used
for the excitation. The impulse sequences and the SoE are de-
rived using the modZFF method. The acoustic signal is syn-
thesized by exciting a 12th order LP model, computed at im-
pulse locations (epochs) for Noh voice signals down-sampled
to 8 kHz for each case. Noh voice signal is chosen because of
its more rapid changes in pitch, than paralinguistic sounds and
emotional speech. Perceptual listening tests are carried out for
each case, by 10 subjects (7 male, 3 female). Scores on a scale
of 1 to 5 are given by each subject, for perceptual closeness be-
tween the original Noh voice and the corresponding synthesized
signal. Then the average scores are computed for each case.

In Table 2, the results are given for these 4 cases, in
columns (a)-(d), respectively. It may be observed that the syn-
thesized acoustic signal using the SoE impulse sequence for
excitation (column (c)) sounds relatively better in comparison
to the other two sequences (columns (a) and (b)). The synthe-
sized acoustic signal using the impulse sequences with location
information, and amplitude as UImps (column (a)) or LF Model
(column (b)), is still intelligible. It indicates that the impulse
location information is relatively more important than the am-
plitudes information, and carries more content. The amplitudes
of impulses are not very critical. But the perceptual scores are
better if the SoE impulse sequence (column (c)) is used for the
excitation. It indicates effectiveness of the modZFF method in
obtaining the SoE impulse sequence. However, naturalness is
lost if the excitation consists of only a sequence of impulses,
as it does not have other residual information. This is validated

Table 2: Results of perceptual listening test: average scores
for perceptual closeness between original Noh voice and the
speech synthesized using excitation as: impulse-sequences hav-
ing epoch locations with (a) unit amplitudes, (b) LF Model,
(c) SoE amplitudes, and (d) LP residual. The three Noh voice
segments considered correspond to Figures 1, 2 and 3 in [2].

Noh voice segment
(a)

UImps
(b) LF-
Model

(c)
SoEImps

(d)
LPRes

Noh voice segment 1 1.51 2.15 2.42 4.39
Noh voice segment 2 1.61 1.85 2.33 4.69
Noh voice segment 3 1.71 1.95 2.32 4.68

Average 1.61 1.98 2.36 4.59

by the synthesized acoustic signal using LP residual for exci-
tation (column (d)). This signal sounds relatively much better
and is quite close to the original Noh voice, because the residual
information in-between the impulses is also present in this case.

6. Summary and conclusion
Nonverbal speech sounds have subharmonics and aperiodic
content in their excitation source component, it was examined
earlier. Human perception takes into account all likely values of
the changing pitch frequency in these regions. If these relatively
important nonuniform intervals and nonuniform amplitudes in
the excitation impulse sequence are made uniform, then valu-
able information is lost. Hence, key challenge lies in estimat-
ing the locations and relative amplitudes of these impulse-like
pulses in the sequence representing the excitation information.
Speech coding methods have focused at obtaining the excitation
impulse sequence only for normal speech. This paper proposes
an impulse-sequence representation of the excitation source in-
formation in acoustic signals of nonverbal speech sounds using
a recently proposed modified zero-frequency filtering method.
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Nonverbal sounds are examined in three categories, namely,
emotional speech, paralinguistic sounds and expressive voices.
Anger speech, laughter and cry, and Noh singing voices are ex-
amined respectively for these three categories. A time-domain
impulse-sequence representing the excitation information in the
signal, for each case, is obtained using the modZFF method.
Validation of the proposed representation is carried out by
analysis-synthesis and perceptual evaluation.

This representation of excitation information in nonver-
bal speech sounds signal should be helpful in their analysis,
representation and speech-coding. It can also lead to signif-
icant savings in-terms of such signals’ storage and process-
ing requirement, with minimal loss or intelligibility of the re-
produced/synthesized sounds, towards development of assistive
technologies for wider applications.
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Abstract
We present in this paper a speech modification method for a per-
son with dysarthria resulting from athetoid cerebral palsy. The
movements of such speakers are limited by their athetoid symp-
toms, and their consonants are often unstable or unclear, which
makes it difficult for them to communicate. In this paper, du-
ration and spectral modification using Non-negative Temporal
Decomposition (NTD) is applied to a dysarthric voice. F0 is
also modified by using linear-transformation. In order to con-
firm the effectiveness of our method, objective and subjective
tests were conducted, and we also investigated the relation-
ship between the intelligibility and individuality of dysarthric
speech.
Index Terms: speech modification, dysarthria, Non-negative
Temporal Decomposition

1. Introduction
Dysarthria refers to a kind of speech disorder resulting from
disturbances in the form or function of the speech mechanism.
Some nervous system diseases, such as Parkinson’s disease or
amyotrophic lateral sclerosis (ALS), produce motor paralysis
which results in dysarthric speech.

In this paper, we focused on a person with dysarthria result-
ing from the athetoid type of cerebral palsy. Cerebral palsy is
a non-progressive disorder of movement, and most people with
cerebral palsy are born with the athetoid type. About two babies
in 1,000 are born with cerebral palsy [1]. Cerebral palsy results
from damage to the central nervous system, and the damage
causes movement disorders. Three general times are given for
the onset of the disorder: before birth, at the time of delivery,
and after birth. Cerebral palsy is classified into the following
types: 1) spastic, 2) athetoid, 3) ataxic, 4) atonic, 5) rigid, and a
mixture of these types [2].

Athetoid symptoms develop in about 10-15% of people
with cerebral palsy [1]. In the case of a person with this type
of dysarthria, his/her movements are sometimes more unstable
than usual. That means their utterances (especially their conso-
nants) are often unstable or unclear due to the athetoid symp-
toms. Athetoid symptoms also restrict the movement of their
arms and legs. Most people with athetoid cerebral palsy cannot
communicate by sign language or writing, so there is great need
for voice systems for them.

In [3], we proposed robust feature extraction based on prin-
cipal component analysis (PCA), which has more stable utter-
ance data, instead of DCT. In [4], we used multiple acoustic
frames (MAF) as an acoustic dynamic feature to improve the
recognition rate of a person with dysarthria, particularly for
speech recognition using dynamic features only. In spite of

these efforts, the recognition rate of dysarthric speech. is still
lower than that of non-dysarthric speech. The recognition rate
using a speaker-independent model, which is trained by non-
dysarthric speech, is 3.5% [3]. This recognition rate suggests
that for people who have not communicated with a person with
athetoid cerebral palsy, it will be very hard for them to under-
stand what that person is trying to say.

Text-to-speech synthesis (TTS) has been applied to a person
with dysarthria in recent years. Veaux et al. [5] used HMM-
based speech synthesis to reconstruct the voice of individuals
with degenerative speech disorders resulting from ALS. Ya-
magishi et al. [6] proposed a project which is named “Voice
Banking and reconstruction”. In that project, various types of
voices are collected, and they proposed TTS for ALS using that
database. We also proposed TTS for a person with dysarthria
using HMM-based speech synthesis [7]. However, in general,
TTS systems need a large amount of training data. In [7], we
used more than 500 sentences of dysarthric speech to construct
a speaker-dependent model.

Voice conversion (VC) has also been applied to dysarthric
speech. The difference between TTS and VC is that TTS needs
text input to synthesize speech, whereas VC does not need text
input. In [8], we proposed VC system for dysarthric speech and
improved the intelligibility of dysarthric words. The amount of
the training data for a VC system is less than that for a TTS
system; however, more than 200 words, or 50 sentences, are
used to construct dysarthric speech model. A large amount of
the training data is a high hurdle for practical use of, especially
for people with athetoid cerebral palsy.

Speech modification systems for dysarthric speech, that are
different from TTS or VC have also been proposed. In this pa-
per, speech modification refers to a kind of voice transforma-
tion, which transforms an input labeled speech signal by per-
forming a detailed speech analysis. Kain et al. [9] proposed
speech modification for the vowel portion of dysarthric speech.
Rudzicz [10] proposed a speech modification method for peo-
ple with dysarthria based on the observations from the database.
In general, speech modification needs less training data than
TTS. Moreover, with a speech modification system, it is easier
to preserve the speaker individuality of dysarthric speech than
VC with a system.

This paper proposes a dysarthric speech modification sys-
tem using parallel utterances in order to improve the intelligibil-
ity of dysarthric utterances. Non-negative Temporal Decompo-
sition (NTD) [11] has been proposed in the field of speech cod-
ing and it is applied to the rhythm conversion of non-native En-
glish. We applied NTD to dysarthric speech. Duration (rhythm)
of dysarthric speech is transformed into that of parallel non-
dysarthric speech. The consonants of dysarthric speech are also
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replaced with the consonants of non-dysarthric speech based on
NTD. F0 is also modified by using linear-transformation. The
effectiveness of our method is evaluated by using mean opinion
score (MOS) [12] test, and we investigated the relationship be-
tween the intelligibility and individuality of dysarthric speech.

The rest of this paper is organized as follows: In Section
2, the summary of the NTD algorithm is described. In Section
3, our proposed method is explained. In Section 4, the experi-
mental data are evaluated, and the final section is devoted to our
conclusions.

2. Non-negative Temporal Decomposition
In NTD, the i-th dimensional spectrum, v

i

(t) of time t is de-
composed into spectral event basis w

i,l

and activity h
l

(t). The
problem of NTD is defined as follows:
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where l denotes the number of bases and t
l

denotes the event
timing of l-th basis. By applying the last constraint, activities
are restricted to the range [0, 1].

(1) is rewritten into the cost function as follows:
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is a penalty term to satisfy h
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(2) is minimized by iteratively updating (3) - (5), which is

shown at the top of the next page. These updating rules are
derived in [11]. In [11], line spectral pair (LSP) is used as a
spectral feature; however, we use a magnitude spectrum to es-
timate the event basis and activity more precisely. Moreover
in [11], each event basis corresponds to a single phoneme. In
order to estimate the event basis and activity more precisely, 3
event bases are extracted from a single phone.

3. Modification of Dysarthric Speech
3.1. Flow of our proposed method

Fig. 1 shows the flow of our speech modification process. First,
a dysarthric utterance and a non-dysarthric utterance, which is
parallel to the dysarthric utterance, are labeled by using HMM-
based forced alignment. Here, parallel means that the utter-
ances are spoken by different speakers, but the text is the same.
Then we extract spectral features, F0, and aperiodic features
from the parallel utterances by using STRAIGHT analysis [13].
The duration and extracted spectral features are modified by us-
ing NTD. The extracted F0 is also modified using linear conver-
sion. The modified spectra and F0, and the aperiodic features
of the dysarthric speech are synthesized using STRAIGHT syn-
thesis [13].

Dysarthric speech 

Non-dysarthric speech 

Spectral 
Modification!
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Spectral 
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analysis!

HMM 
forced-

alignment!

Figure 1: Flow of dysarthric speech modification

3.2. Duration modification

The duration of dysarthric speech tends to be longer than non-
dysarthric speech [10]. In [7], we investigated that average du-
ration per mora in 50 dysarthric sentences is 1.3 times slower
than that of non-dysarthric speech. We modified the duration
of dysarthric speech to that of non-dysarthric speech by using
NTD.

First, parallel utterances of dysarthric and non-dysarthric
speech are decomposed into the dictionary and activity. We re-
fer to the basis set as the dictionary. Fig. 2 shows the flow of
the decomposition. The dysarthric spectrum V

s 2 R(I�J) is
decomposed into the source dictionary W

s 2 R(I�L) and its
activity H

s 2 R(L�J) using NTD.

V

s � W

s

H

s (6)

The non-dysarthric spectrum V

t 2 R(I�K) is decomposed
into the target dictionary W

t 2 R(I�K), and its activity
H

t 2 R(K�J) is the same way the dysarthric spectra is.

V

t � W

t

H

t (7)

In NTD, the l-th event timing t
l

is defined with the center frame
of l-th phoneme label. Therefore, Ws and W

t will be parallel.
The durations of dysarthric spectra is modified as shown in

Fig. 3.

V

s�t = W

s

H

t (8)

Because we use the source dictionary for duration modification,
only the duration is modified.

3.3. Spectral modification

In general, the vowels voiced by a speaker strongly indicate the
speaker’s individuality. On the other hand, the consonants of
people with dysarthria are often unstable. In [8], in order to
improve the intelligibility of dysarthric utterances, we converted
dysarthric consonants into non-dysarthric ones. Based on the
same idea, we use a “combined-dictionary” that consists of the
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bases of dysarthric vowels from the source dictionary and bases
of non-dysarthric consonants from the target dictionary.

The dysarthric spectra V

s�t are modified as shown in
Fig. 4 where Ŵ

st denotes the combined-dictionary.

V̂

s�t = Ŵ

st

H

t (9)

By using the combined-dictionary, only consonants are modi-
fied, and we can preserve the speaker’s individuality. Moreover,
by using target activity, the duration of dysarthric speech is also
modified.

I Wst

L 

Combined dictionary 
(I x L) 

Synthesis 

Modified spectra 
(I x K) 

V̂s→t

Activity of  
non-dysarthic spectra 
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Figure 4: Spectral modification

3.4. F0 modification

Fig. 5 shows an example of non-dysarthric F0. Fig. 6 shows
an example of dysarthric F0, which is a parallel utterance of

Fig. 5. Although these utterances are parallel, F0 trajectories
are different between the two utterances. In a TTS system [7]
the F0 model is trained from non-dysarthric speech in order to
synthesize an intelligible voice.

In the proposed F0 modification, we use non-dysarthric F0,
which is linearly transformed in order to preserve the source
speaker’s individuality as follows:

f0conv(t) =
�(s)

�(t)
(f0t(t) � µ(t)) + µ(s), (10)

where f0s(t), f0t(t), and f0conv(t) denote log-scaled F0 of
dysarthric speech, non-dysarthric speech, and modified speech
at frame t, respectively. µ(s) and �(s) denote the mean and
standard deviation of the log-scaled F0, as calculated from
dysarthric speech. µ(t) and �(t) are the mean and standard de-
viation of non-dysarthric speech.
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Figure 5: Example of non-dysarthric F0
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Figure 6: Example of dysarthric F0

4. Experimental Results
4.1. Experimental Conditions

The proposed method was evaluated on sentence-based speech
modification for one Japanese male with dysarthric speech. We
recorded 50 sentences, which are found in the ATR Japanese
database [14]. The speech signals were sampled at 12 kHz, and
the frame shift was 5 ms.

Label data were obtained by HMM-based forced alignment
using HTK. In the case of dysarthric speech, it is difficult to
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obtain precise label data using HMM because some phonemes
in dysarthric speech fluctuated due to the speaker’s inability to
speak clearly. Moreover, dysarthric speech includes the unex-
pected sound of breath. Therefore, some labels are replaced.

Acoustic and prosodic features were extracted using
STRAIGHT. Duration and spectra are modified using NTF. The
dictionary is initialized with the spectra of the center frame of
each phoneme. The activity of the l-th event area (between t

l�1

and t
l+1) is initialized with positive random values. The num-

ber of dimensions of STRAIGHT spectra is 513. ↵ is set at
100.

We conducted the objective evaluation to evaluate the pre-
cision of the decomposition of NTF. We used log spectrum dis-
tance (LSD) as a measurement.

LSD[dB] =

vuut1
I

IX

i

(20 log10

vs

i

(t)

vconv

i

(t)
)2 (11)

We compared 3 methods: 1) duration modification, 2) du-
ration and spectral modification, and 3) duration, F0, and spec-
tral modification. We conducted subjective evaluations using a
5-scale MOS test. A total of 10 Japanese speakers took part
in the listening test using headphones. We evaluated both the
aspect of listening intelligibility and the aspect of speaker simi-
larity. For listening intelligibility, dysarthric speech and non-
dysarthric speech are presented as reference voices, and the
opinion score was set as follows: (5: very intelligible, just
like non-dysarthric speech, 4: intelligible, like non-dysarthric
speech, 3: fair, 2: not so intelligible, like dysarthric speech, 1:
unintelligible, just like dysarthric speech). For speaker similar-
ity, dysarthric speech and non-dysarthric speech are also pre-
sented as the references, and the opinion score was set as fol-
lows: (5: very similar to a person with dysarthria, 4: similar
to a person with dysarthria, 3: fair, 2: similar to a physically
unimpaired person, 1: very similar to a physically unimpaired
person).

4.2. Results and Discussion

We evaluated log spectrum distance (LSD) using the different
number of bases in the dictionary, and the results are shown in
Table 1. We obtained a better result when we used three bases
for one phoneme than when the number of the bases is the same
as that of the phoneme (default setting as [11]). The LSD of
dysarthric speech is worse than that of non-dysarthric speech.
We assume that this is because dysarthric speech fluctuates.

Table 1: LSD of using different dictinoaries

#basis of phoneme Dysarthric [dB] Non-dysarthric [dB]
1 2.33 2.17
3 1.93 1.52

Fig. 7 and Fig. 8 show an example of non-dysarthric spectra
and dysarthric spectra, respectively. Comparing Fig. 7 to Fig. 8,
the duration of dysarthric speech tends to be long and dysarthric
spectra have weak energy. Fig. 9 shows an example of duration-
modified spectra. Fig. 10 shows an example of duration and
spectrum-modified spectra.

Figure 7: Example of non-dysarthric spectra

Figure 8: Example of dysarthric spectra

Figure 9: Example of duration-modified spectra

Figure 10: Example of duration and spectrum-modified spectra

Fig. 11 and Fig. 12 show the results of the subjective
evaluation on intelligibility and similarity to a person with
dysarthria, respectively. Error bars show 95% confidence area,
and the results are confirmed with the p-value test result of 0.05.
Fig. 11 shows that duration, spectrum, and F0 modification
significantly improve the intelligibility of dysarthric speech.
Duration- and spectrum-modified speech (without F0 modifica-
tion) is slightly improved the intelligibility of dysarthric speech.
Fig. 12 implies, that because we focus on consonants in spec-
trum modification, duration and spectrum modification preserve
speaker individuality. Considering the results shown in Fig. 11
and Fig. 12, F0 is important for improving intelligibility, and
speaker similarity is also impacted greatly by it.

5. Conclusions
We proposed speech modification for dysarthric speech result-
ing from athetoid cerebral palsy. Input dysarthric speech is la-
beled by HMM-based forced alignment. Using the label data
and parallel non-dysarthric speech, the duration, spectra, and F0
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Figure 12: MOS test on similarity

are modified to improve the intelligibility of dysarthric speech.
We applied NTF for dysarthric duration and spectrum modifi-
cation and linear-conversion for dysarthric F0.

Using a subjective testing approach, we investigated the re-
lationship between modified features, intelligibility and simi-
larity to a person with dysarthria. Experimental results show
that our speech modification effectively improved the intelli-
gibility of dysarthric speech. However, it was also confirmed
that speaker similarity is quite sensitive to F0. Therefore,
intelligibility-preserving F0 modification will be the subject of
future work. In this paper, there was only one test subject, so in
future experiments, we will increase the number of test subjects
and further examine the effectiveness of our method. Future
work will also include efforts to study the co-articulation effect
between phonemes.
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Abstract
Individuals with larynx (vocal folds) impaired have prob-

lems in controlling their glottal vibration, producing whispered
speech with extreme hoarseness. Standard automatic speech
recognition using only acoustic cues is typically ineffective for
whispered speech because the corresponding spectral character-
istics are distorted. Articulatory cues such as the tongue and lip
motion may help in recognizing whispered speech since artic-
ulatory motion patterns are generally not affected. In this pa-
per, we investigated whispered speech recognition for patients
with reconstructed larynx using articulatory movement data. A
data set with both acoustic and articulatory motion data was col-
lected from a patient with surgically reconstructed larynx using
an electromagnetic articulograph. Two speech recognition sys-
tems, Gaussian mixture model-hidden Markov model (GMM-
HMM) and deep neural network-HMM (DNN-HMM), were
used in the experiments. Experimental results showed adding
either tongue or lip motion data to acoustic features such as mel-
frequency cepstral coefficient (MFCC) significantly reduced the
phone error rates on both speech recognition systems. Adding
both tongue and lip data achieved the best performance.
Index Terms: whispered speech recognition, larynx recon-
struction, speech articulation, deep neural network, hidden
Markov model

1. Introduction
Larynx is one of the most important articulators for speech and
sound production. Vocal fold vibration produces the sounding
source for speech. People who have their larynx (vocal fold)
impaired due to physical impairment or treatment of laryngeal
cancer suffer during their daily life. A surgery can help these
patients reconstruct or repair their larynx, but their phonation
can hardly be completely recovered [1]. Patients with surgi-
cally reconstructed larynx generally have problems in control-
ling laryngeal functions, thus producing whispered speech with
extreme hoarseness [2]. Therefore, assistive automatic speech
recognition (ASR) technology is necessary so that they can in-
teract with computers or smart phones in their daily life like
normal people do. A standard ASR system that focuses on
recognizing normal speech does not work well for these pa-
tients, because their speech mostly contains an unvoiced mode
of phonation. Thus, ASR systems that are specialized for whis-
pered speech are needed [3].

Whispered speech produced by patients with reconstructed

larynx can be treated as a kind of disordered speech, which de-
grades the performance of conventional speech recognition sys-
tems [4,5]. Whispered speech misses glottal excitation, leading
to abnormal energy distribution between phone classes, varia-
tions of spectral tilt, and formant shifts due to abnormal con-
figurations of the vocal tract [3, 6], which are the main causes
of performance degradation of a standard ASR system. To im-
prove the performance of whispered speech recognition, most
of the conventional studies used whispered speech data that are
collected from normal talkers and focused on reducing the mis-
match between normal and whispered speech in acoustic do-
main through acoustic model adaptation and feature transfor-
mation [7–11].

Articulatory information has been proven effective in
the applications of normal speech recognition [12–16] and
dysarthric speech recognition [17, 18]. Compared to acoustic
features, articulatory features are expected to be less affected
for these patients who produce whispered speech [19]. There
are a few studies applying articulatory or non-audio informa-
tion in whispered speech recognition [10, 19, 20]. For example
in [19], the authors applied articulatory features (also known as
phonological attributes) of whispered speech. Most of the exist-
ing work using articulatory information focused on descriptive
or derived articulatory features in acoustic domain. Articulatory
movement data such as tongue and lip motion have rarely been
applied in this application.

In this paper, we investigated whispered speech recogni-
tion for a larynx reconstructed patient using tongue and lip mo-
tion data. To our knowledge, this is the first study for whis-
pered speech recognition with articulatory data. Tongue and lip
motion data were collected using an electromagnetic articulo-
graph. Two speech recognizers were used: Gaussian mixture
model-hidden Markov model (GMM-HMM) and deep neural
network-hidden Markov model (DNN-HMM). In the experi-
ments, we examined several settings on both speech recognition
systems to verify the effectiveness of adding articulatory move-
ment data: mel-frequency cepstral coefficient (MFCC)-based
acoustic features, lip and tongue movement-based articulatory
data, and MFCC with articulatory data. The remaining of the
paper is organized as follows: Section 2 describes our acous-
tic and articulatory data collected from a patient with surgically
reconstructed larynx. In Section 3, we present our experimen-
tal design including speech recognition systems and experimen-
tal setup. Section 4 shows experimental results and discussion.
Conclusions are summarized in Section 5.
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(a) Wave System

x
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z

(b) Sensor Locations
Figure 1: Articulatory (tongue and lip) motion data collection setup.

2. Data Collection
2.1. Participants and stimuli

The patient is a male of 23 years old. He had his larynx
damaged in an accident and then took a larynx reconstruction
surgery in 2014. His speech showed extreme hoarseness. He is
not using assistive device on a daily basis. He participated in the
data collection, where he produced a sequence of 132 phrases at
his habitual speaking rate. The phrases were selected from the
phrases that are frequently spoken by persons who use augmen-
tative and alternative communication (AAC) devices [21, 22].

2.2. Tongue motion tracking device and procedure

An electromagnetic articulograph (Wave system, Northern Dig-
ital Inc., Waterloo, Canada) was used for articulatory data col-
lection (Figure 1a). Four small sensors were attached to the
surface of patient’s articulators, two of them were attached
to tongue tip (TT, 5-10mm to tongue apex) and tongue back
(TB, 20-30mm back from TT) using dental glue (PeriAcry1
90, GluStitch). The other two were attached to upper lip (UL)
and lower lip (LL) using normal double-sided tape. In addi-
tion, another sensor was attached to the middle of forehead for
head correction. Our prior work indicated that the four-sensor
set consisting of tongue tip, tongue back, upper lip, and lower
lip are an optimal set for this application [23–25]. The po-
sitions of all five sensors are shown in Figure 1b. With this
approach, three-dimension movement data of articulators were
tracked and recorded. The sampling rate in Wave recording
in this project was 100Hz, The spatial precision of movement
tracking is about 0.5mm [26].

The patient was seated next to the magnetic field generator,
which is the blue box in Figure 1a, and read the 132 phrases.
A three-minute training session helped the patient to adapt to
speak with tongue sensors before the formal data collection ses-
sion.

Before data analysis, the translation and rotation of the head
sensor were subtracted from the motion data of tongue and lip
sensors to obtain head-independent articulatory data. Figure
1b illustrates the derived 3D Cartesian coordinates system, in
which x is left-right direction; y is vertical; and z is front-back
direction. We assume the tongue and lip motion patterns of the
patient remain the same as normal talkers, where the movement
in x direction is not significant in speech production. There-
fore, only y and z coordinates were used for analysis in this
study [27].

Acoustic data were collected synchronously with the artic-

ulatory movement data by built-in microphone in the Wave sys-
tem. In total, the data set contains 2,292 phone samples of 39
unique phones.

2.3. Acoustic data

Figure 2 shows the spectrograms of whispered speech and nor-
mal (vocalized) speech examples producing the same phrase
I want to hurry up. Figure 2a is an example spectrogram of
whispered speech produced by the patient in this study. Fig-
ure 2b is an example of normal speech produced by a healthy
speaker. The healthy speaker’s data example was just used to
illustrate the difference between the spectrograms of whispered
and normal speech, and therefore it was not used in analysis. In
the figure, brighter color (and reddish) denotes higher energy.
As illustrated in Figure 2, for normal speech, the phone bound-
aries are relatively clear based on spectral energy shape and for-
mant frequencies, and it is easy to distinguish. For whispered
speech, however, most of phones have very similar spectral pat-
tern without fundamental frequency, which makes it hard to find
the boundary between the phones using acoustic information
only. For example, the phone pairs like ‘AH’ and ‘P’ in word
‘up’, can hardly be distinguished in whispered speech, also the
‘HH’ and ‘ER’ in word ‘hurry’ are not easy to classify. On the
other hand, those two phone pairs can be clearly distinguished
in normal speech, showing that vowels have higher energy and
distinct formant frequencies. The ambiguity of phone bound-
aries contributed to lower performance in whispered speech
recognition using standard ASR techniques.

2.4. Articulatory data

Figure 3a and 3b give examples of articulatory movement data,
which are obtained from the motion tracking of sensors when
uttering same phrase (I want to hurry up) in Figure 2, respec-
tively. As mentioned previously, four sensors were attached to
articulators (upper lip, lower lip, tongue tip, and tongue back).
As illustrated in Figure 3, the articulatory movement pattern of
whispered speech somewhat resembles the articulatory move-
ment pattern of normal speech, although the motion range of
whispered speech by the patient was larger than that by the
healthy talker. Therefore, we expected that articulatory motion
data may improve the performance of whispered speech recog-
nition. The larger motion range of tongue and lips of the patient
may be because he uses more force than normal talkers during
his speech production. For illustration purpose, the two artic-
ulatory shapes (tongue and lip sensor motion curves) in Figure
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(a) Whispered (hoarse) speech produced by the patient
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(b) Normal Speech
Figure 2: Spectrogram examples of whispered and normal speech producing ”I want to hurry up”.

3 were rotated slightly so that the UL and the LL sensors were
aligned vertically.

3. Method

Standard speech recognition systems are typically based on hid-
den Markov models (HMMs), which are an effective frame-
work for modeling time-varying spectral feature vector se-
quence [28]. A number of techniques for adapting or describ-
ing input features are typically used together with HMM. In this
study, we used two speech recognizers: the long-standing Gaus-
sian mixture model (GMM)-HMM and the recently available
deep neural network (DNN)-HMM. Major parameter configu-
ration of the two recognizers was shown in Table 1.

3.1. GMM-HMM

The Gaussian mixture model (GMM) is a statistical model for
describing speech features in a conventional speech recogni-
tion system. Given enough Gaussian components, GMMs can
model the relationship between acoustic features and phone
classes as a mixture of Gaussian probabilistic density functions.
More detail explanation of GMM can be found in [29]. GMM-
HMM is a model that is “hanging” GMMs to states of HMM,
in which GMMs are used for characterizing speech features and
HMM is responsible for characterizing temporal properties.

GMM-HMM have been widely used in modeling speech
features and as an acoustic model for speech recognition for
decades until DNN attracted more interests in the literature re-
cently. However, GMM is still promising when using a small
data set. In addition, because of its rapid implementation and
execution, we included GMM as a baseline approach. Table 1
gives the major parameters for GMM-HMM.

3.2. DNN-HMM

Deep neural networks (DNNs) with multiple hidden layers have
been shown to outperform GMMs on a variety of speech recog-
nition benchmarks [30] including recent works that involved
articulatory data [17, 31]. DNN-HMM takes multiple frames
of speech features as input and produces posterior probabilities
over HMM states as output. The DNN training is based on re-
stricted Boltzmann machines (RBMs). The weights between
nodes in neighboring layers at iteration t + 1 are updated based
on iteration t using stochastic gradient descent described by the
following equation:

w
ij

(t + 1) = w
ij

(t) + ⌘
@C

@w
ij

(1)

in which w
ij

is the weight between nodes i and j of two lay-
ers next to each other, ⌘ is the learning rate, and C is the cost
function. The output posterior probabilities of DNN are used
for decoding. More detailed description of DNN can be found
in [30, 32–34]. The similar structure and setup of DNN in [31]
were used in this experiment which has 5 hidden layers, each
of hidden layers has 512 nodes. We tested all layers from 1 to
6 in each experimental configuration, and the best result was
obtained when using 5 hidden layers. The one-subject data set
has a relatively small size, thus we used only 512 nodes. The
input layer would take 9 frames at a time (4 previous plus cur-
rent plus 4 succeeding frames), therefore the dimension of in-
put layer changed given different types of data. For example,
for the experiments using both MFCC and articulatory data,
the dimension of each frame is 13-dimensional MFCC plus 8-
dimensional movement plus their delta and delta of delta formed
a 63-dimensional vectors that were fed into the DNN. But for
the experiments using only MFCC, the frame dimension is 39.
The output layer has 122 dimensions (39 phones ⇥ 3 states each
phone plus 5 states for silence).

82



0 20 40 60 80 100
z(mm)

-140

-135

-130

-125

-120

-115

-110

-105

-100

-95

-90

y(
m
m
)

-40 -20 0 20 40 60
z(mm)

-140

-135

-130

-125

-120

-115

-110

-105

-100

-95

-90

y(
m
m
)

UL

LL

UL

LL

TT

TB
TT

TB

(a) Whispered speech produced by the patient
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(b) Normal speech produced by a healthy talker

Figure 3: Examples of motion path of four articulators TT, TB, UL, and LL of whispered and normal speech for producing “I want to
hurry up”. In this coordinate system, y is vertical and z is anterior-posterior.

3.3. Experimental Setup

In this project, frame rate was 10 ms (equivalent to sampling
rate of articulatory data recording: 100 Hz). Two dimen-
sional (vertical and anterior-posterior) EMA data of four sen-
sors (tongue tip, tongue body back, upper lip, and lower lip)
were used for the experiments. As mentioned previously, for
each frame, all either acoustic features, i.e., MFCCs or articu-
latory movement data plus delta and delta of delta form vec-
tors that were fed into a recognizer. HMM has left-to-right
3-states with a context-independent monophone models. Tri-
phone models were not considered due to the small size of our

Table 1: Experimental setup.

Acoustic Feature
Feature vector MFCC (13-dim. vectors)

+ � + �� (39 dim.)
Sampling rate 22050 kHz
Windows length 25 ms
Articulatory Feature
(both tongue and lips)
Feature vector articulatory movement vector (8 sensors)

+ � + �� (24 dim.)
Concatenated Feature
Feature vector MFCC + articulatory movement vector

(21-dim vector) + � + �� (63 dim.)
Common
Frame rate 10 ms

GMM-HMM topology
Monophone 122 states (39 phones ⇥ 3 states, 5 states

for silence), total ⇡ 1000 Gaussians
(each state ⇡ 8 Gaussians)
3-state left to right HMM

Training method maximum likelihood estimation (MLE)

DNN-HMM topology
Input 9 frames at a time (4 previous plus

current plus 4 succeeding frames)
Input layer dim. 216 (9 ⇥ 24 for articulatory)

351 (9 ⇥ 39 for acoustic)
567 (concatenated)

Output layer dim. 122 (monophone)
No. of nodes 512 nodes for each hidden layer
Depth 5-depth hidden layers
Training method RBM pre-training, back-propagation

Language model bi-gram phone language model

data set in this work. A bi-gram phone-level language model
was used. The training and decoding were performed using the
Kaldi speech recognition toolkit [35].

Phone error rate (PER) was used as a whispered speech
recognition performance measure, which is the summation of
deletion, insertion, and substitution phone errors divided by the
number of all phones. For each of two recognizers, whispered
speech recognition experiments were conducted using different
combinations of features, including MFCC only, MFCC con-
catenated with lip motion data, MFCC with tongue data, and
MFCC with both of lip and tongue data.

Three-fold cross validation was used in the experiments.
The average performance of the executions was calculated as
the overall performance.

4. Results & Discussion
Figure 4 shows the average PERs of speaker-dependent whis-
pered speech recognition for the patient. The baseline results
(67.2% for GMM-HMM and 66.1% for DNN-HMM) were ob-
tained using only acoustic (MFCC) features.

The PERs were reduced by adding either tongue motion
data (63.6% for GMM-HMM and 63.3% for DNN-HMM) or
lip motion data (65.6% for GMM-HMM and 65.6% for DNN-
HMM) to MFCC features although the PERs of independent lip
motion data or tongue motion data are higher than that obtained
with MFCC features only. Particularly, using tongue motion
data was more effective than with lip motion data, producing
better phone recognition performance. This result is consis-
tent with our previous speech recognition tasks with articula-
tory data [24], because tongue motion contains more informa-
tion than lip motion during speech production [25].

The best performance was achieved when both lip and
tongue data were applied with acoustic data, 63.0% for GMM-
HMM and 62.1% for DNN-HMM. These results indicate that
MFCC, lip motion data, and tongue motion data have comple-
mentary information in distinguishing phones.

A two-tailed t-test was performed to measure if there were
statistical significance between the performances of the config-
uration with MFCC only and other configurations. As indicated
in Figure 4, most data configurations of MFCC+articulatory
features showed a statistical significance with the MFCC con-
figuration. The results suggested that adding tongue data or
both lip and tongue data to MFCC features significantly im-
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Figure 4: Phone error rates of whispered speech recognition obtained in the experiments using monophone GMM-HMM and DNN-
HMM with various types of data (MFCC, Lip, Tongue, Lip+Tongue, MFCC+Lip, MFCC+Tongue, and MFCC+Lip+Tongue). Statis-
tical significances between the results obtained using MFCC and other data types on each ASR model are marked: * p <0.05, **
p <0.01, *** p <0.001.

proved the performance. Adding lip movement data, however,
did not show a significance, although a slight improvement was
observed. The observation may be because of the small data
size. A further study with a data set of larger size is needed to
verify these findings.

To understand the contribution by adding articulatory
movement data in whispered speech recognition, we also tested
the recognition performance from articulatory data only (i.e.,
without using acoustic features, or silent speech recognition).
Figure 4 gives the silent speech recognition results of using
GMM-HMM and DNN-HMM, respectively. For both GMM-
HMM and DNN-HMM, the least performances were obtained
when using lip data only; the best performances were obtained
when using both tongue and lip data. The results on individual
articulatory data configurations (lip, tongue, lip + tongue) were
positively correlated by the contribution of adding the data. In

Table 2: Numbers of deletion, insertion, and substitution errors
in the experiment of whispered speech recognition with articu-
latory data.

Model Feature Del Ins Sub

GMM

MFCC 723 78 740
MFCC+Lip 640 110 752
MFCC+Tongue 657 109 691
MFCC+Lip+Tongue 652 117 674

DNN

MFCC 696 71 752
MFCC+Lip 782 62 656
MFCC+Tongue 761 59 632
MFCC+Lip+Tongue 783 56 610

other words, using tongue data only obtained a better recog-
nition performance than using lip data only, which explained
why adding tongue information better improved the whispered
speech recognition than adding lip information. These find-
ings are consistent with our previous work for silent speech
recognition using data from combinations of articulators (sen-
sors) [24,25]. Using only articulatory data always obtained less
performance than using acoustic data only, which is also con-
sistent with our prior finding [24].

In addition, Table 2 gives a summary of deletion, insertion,
and substitution in the phone recognition errors in these exper-
iments. Table 2 provides more details that different articula-
tory data decrease the PER in different ways. For GMM-HMM,
adding lip data would decrease the number of deletion by 83
but increased the numbers of insertion and substitution. How-
ever, adding tongue data decreased the number of substitution
and deletion, but increased the number of insertion. For DNN-
HMM, adding either tongue or lip data would considerably de-
crease insertion and substitution errors, although it increased
deletion errors. As discussed earlier, we think adding articula-
tory motion data will help the recognizer to find the boundaries
between phones. However, how tongue or lips affect the num-
ber of deletion, insertion, and substitution needs to be verified
with a larger data set.

DNN typically outperformed GMM in ASR using acous-
tic data only [30] or using both acoustic and articulatory data
[17, 33]. In this work, DNN performance was slightly better
than that of GMM as well. Although our data set is small
and DNN typically requires a larger data set, DNN still can
model the complex structure of whispered speech in this project.
This result indicates that DNN will be promising for whispered
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speech recognition with articulatory data for a larger, multiple-
speaker data set.

In summary, the experimental results demonstrated the ef-
fectiveness of applying articulatory movement data to whis-
pered (hoarse) speech recognition. In addition, the results in-
dicated that adding tongue motion data will improve the perfor-
mance more than that by adding lip motion data in whispered
speech recognition. The best performance was obtained when
both tongue and lip motion data were used.

Limitation. Although the results are promising, the
method (adding articulatory data on top of acoustic data) has
been evaluated with only one subject (patient) with whispered
speech. A further study with a multiple-speaker data set is
needed to verify these findings.

5. Conclusions & Future Work
The effectiveness of articulatory (tongue and lips) movement
data in whispered speech recognition has been tested with a
data set that was collected from an individual with a surgically
reconstructed larynx. The experimental results suggested that
adding articulatory movement data decreased the PER of whis-
pered speech recognition for widely used ASR models: GMM-
HMM and DNN-HMM. The best performance was obtained
when acoustic, tongue, and lip movement data were used to-
gether.

Future work includes verifying the findings using a larger
data set and using other latest ASR models such as deep recur-
rent neural networks [36].
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Abstract
The dialogue management framework flexdiam was de-
signed to afford people across a wide spectrum of cognitive ca-
pabilities access to a spoken-dialogue controlled assistive sys-
tem, aiming for a conversational speech style combined with
incremental feedback and information update. The architecture
is able to incorporate uncertainty and natural repair mechanisms
in order to fix problems quickly in an interactive process – with
flexibility with respect to individual users’ capabilities. It was
designed and evaluated in a user-centered approach in cooper-
ation with a large health care provider. We present the archi-
tecture and showcase the resulting autonomous prototype for
schedule management and accessible communication.
Index Terms: human-computer interaction, conversational
spoken dialogue, user models, incremental processing, flexible
grounding, assistive systems

1. Introduction and outline
Making spoken human-machine interaction both easy and ef-
fortless, and also robust in presence of contradictory pieces of
information, is one of the central challenges in providing univer-
sal accessibility over this modality. Two of the user groups that
would benefit most from this are, on the one hand, older adults,
who may be reluctant or lack the capacities to interact with tech-
nology using more widely supported modalities, but also peo-
ple with cognitive impairments, for whom accessing even well-
designed classical interfaces can be a challenging task. Spoken
interaction is overall reported as the preferred modality by older
adults with little technological experience [1]. While speech
recognition for these user groups can present specific difficul-
ties [2], the available technology for word recognition has im-
proved in the last few years to a degree that it is now feasible.
Given robust – and engaging – spoken interaction, these user
groups could benefit from easily accessible and understandable
interfaces to technological solutions that help them to maintain
an autonomous lifestyle.

In our cooperation with the large health and social care
provider v. Bodelschwinghsche Stiftungen Bethel, we have ex-
plored the paradigm of a spoken-language controlled virtual as-
sistant for schedule management, to aid in maintaining a client’s
day structure. Initially, in Wizard-of-Oz explorations, we es-
tablished that both user groups are, in general, capable of con-
ducting such interactions in a brief and effortless conversational
style. We also found that the approach was subjectively judged
as pleasant, effective and appropriate.

Building on our existing architecture for incremental dia-
logue processing, we created a dialogue management frame-
work that aims to address several issues critical to making au-
tonomous interactions with these user groups work robustly, the

central requirements being:

• being aware, and addressing interactively, ambiguities in
user input,

• being able to react rapidly and give feedback before
problems can cascade,

• presenting and negotiating information in a way that sup-
ports individual capabilities, and

• allowing the user to feel in charge and being served well.

The resulting architecture was used to build a dialogue sys-
tem that is able to provide basic schedule management and ac-
cess to video communication with a conversational, incremental
spoken interface represented by an embodied assistant, which
we are presenting here. A subset of this functionality, namely
completing a weekly schedule if events, was evaluated with
older adults and people with cognitive impairments, leading to
comparable performance and subjective ratings as the earlier
WOz system.

2. Architecture overview
We present the architecture in an abridged account here, please
refer to our previous work [3] for more details on the internal
mechanics. flexdiam builds on our general architecture for
incremental processing, IPAACA [4]. This this architecture,
based on an abstract model by Schlangen et al. [5], information
is represented as so-called ‘Incremental Units’ (IUs), which are
globally exchanged information packages that can form func-
tional networks. It is designed to be used to represent data in
both the input (and interpretation) channels and processing, and
also in output planning and realization (cf. Fig. 1, left).

The temporal structure of dialogue is represented in the
TimeBoard, which stores all past, ongoing, and projected fu-
ture events in thematically grouped tiers (Fig. 2). It serves as
the interface between input processing, dialogue management
proper, and behavior planning and realization. Events are most
often either a single IU or a specific sequence of IUs. A set of
interval relations on sets of tiers is used to determine higher-
level events.

Data other than events with temporal extent, i.e. knowledge
and propositional information, are represented via a structure
termed VariableContext (Fig. 1, right), a blackboard satis-
fying two requirements: firstly, all information may reside there
in the form of distributions. Moreover, all changes are stored
as time-stamped deltas, enabling both rollbacks and for analy-
sis between two points in time. Task and discourse states are
represented a forest of structures called Issues, terminology
adapted from Larsson [6], that represent (attributed) common
current topics or current questions that have to be resolved co-
operatively. In flexdiam, they are independent agents that
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Figure 1: Architecture overview. The cloud on the left represents external input/output modules that are not part of flexdiam proper, but
connected via the common middleware IPAACA. Data structures and processing are described in the text.

encapsulate the structure of the task addressed so far, localized
planning, as well as situated interpretative capability and situ-
ated capability for abstract actions (multimodal dialogue contri-
butions and side effects). The dialogue manager proper relays
information hierarchically though the Issue forest (see Fig. 3 for
an example of this in the interpretation process).

In line with the general notion of temporal variability and
uncertainty, all operations that do not have immediate effect are
treated as asynchronously performed operations that can fail.

3. Input and output
As mentioned above, all input and output components are con-
nected to flexdiam using the IPAACA middleware.

Speech input can be delivered by several components, alter-
natively or concurrently (there are bridges for Windows ASR,
Dragon NaturallySpeaking Client SDK and an experimental
one for Google’s ASR). A parser component is used to pre-
process all ASR hypotheses, identifying the points of deviation
in hypotheses, performing an early classification of portions of
an utterance using pattern matching, and offering an interface
for triggering external NLU accessories, such as POS taggers.
Other input modalities accessible over IPAACA include two
types of eye tracker, touch screens, keyboard and mouse input.

Output is realized by emitting request IUs that realizer com-
ponents can listen for and handle. The virtual agent is controlled
by the ASAPrealizer [7], which accepts action descriptions in
the Behavior Markup Language. Speech generation is realized
using a CereVoice [8] TTS component, which is driven by AS-
APrealizer. There is a separate controller for GUI elements that
can either be addressed directly or in a speech-synchronized
manner by ASAPrealizer. Language output is not generated di-
rectly in flexdiam, but relayed to an associated dedicated NLG
component that can offer multiple alternative realizations for an
abstract request (though currently, flexdiam always chooses the
first one to appear).

Fig. 4 depicts the typical interface setup, in an interaction
scene between an older subject and the virtual agent “Billie”.
Subjects interacted using the table microphone and touchscreen
(red ‘panic button’ in the corner).

4. Experiments
A basic dialogue system constructed with flexdiam has been
subjected to small-scale evaluations with both older adults
(n=6) [3] and people with cognitive impairments (n=5). The
task for participants was to enter a freely chosen set of appoint-
ments into their fictional calendar, the same domain as an earlier
Wizard-of-Oz experiment [9], in which we showed that people
with cognitive impairments in particular benefit from a much
more explicit information grounding strategy compared to con-

Figure 4: flexdiam driving a virtual agent, “Billie”, in an au-
tonomous interaction study with an older adult (anonymized).

trols when their ability to detect system errors is observed. We
also found inter-group differences in preferred verbalizations
(e.g. more frequent first-person requests in older adults vs. more
frequent neutral dictation in people with cognitive impairments)
[10].

For the interactions with the autonomous prototype, we pro-
vided some ideas for events on a paper sheet with textual and
iconic representations. Subjects were instructed to stick to the
task and be to the point, but not primed as to how to phrase their
requests or replies. In general, participants were able to enter
appointments successfully. Some leeway was given by partic-
ipants if the agent paraphrased only (a relevant) part of their
event descriptions – a simple heuristic approach was used to
extract candidate topics from the free-form utterances.

The system in that state was configured to always yield the
floor and let the user talk at their leisure. One subject from
each group used very verbose interaction styles and attempted
to provide a lot of tangential information, despite a clarifying in-
structive intervention that could be inserted after an initial free
practice phase. The current focus of development is hence on
subtle and acceptable approaches to pre-emptive floor manage-
ment.

Subjective ratings of the autonomous system in terms of ef-
fectiveness and usability did not differ significantly from the
earlier WOz experiment that targeted the same interface and
task domain [3].

5. Demo system
The demo system showcases flexdiam in a schedule planning
scenario controlled by spoken language, enabling the user to
go through their (fictional) week, modifying events, decid-
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Figure 2: Temporal representation of dialogue events on the TimeBoard. In a situation where the user (red) wanted to enter a new
appointment, they produced an utterance that was mispronounced, leading to ambiguities. The DM posted a clarification question
(blue), its predicted end time is shown extending beyond the time marked ‘now’. In the current situation, the reply by the user has
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(Grounding). Both contribute to the evidence that leads to a proposed Context update (right). Since the requirements for a confirmation
question were met, the bottommost Issue reports itself as fulfilled. The mechanism during incremental interpretation is identical.

ing about events offerd by third parties, as well as an inter-
face to an encrypted video telephony application that can be
triggered from inside the dialogue situation. Different modes
of information grounding can be selected (e.g. concise sum-
maries vs. fine-grained confirmation requests), these correspond
to user models for different cognitive abilities; and a live view
into the information update process is possible. The demo
setup includes a computer, a desk microphone, and an eye
tracker. A recording of a previous version is accessible online
at purl.org/net/ramin/slpat2016/.

6. Outlook

In the ongoing project with our health care partner, larger-
scale evaluations of various aspects of the system are under-
way, later extending to prolonged experimental deployment in
private home environments of interested participants. Current
and future steps of development include proactive floor man-

agement and improved reference resolution mechanisms in the
framework. We are planning to release documentation and a
source code package for flexdiam in the future under a permis-
sive license.
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a1 AGNT Do you have another appointment?
SUBJ Yes. Then, I have yet another appointment ... on Friday

a2 AGNT So, on Friday, right? OK. At what time does it start?
SUBJ Right. Then I’ll pick 3 PM again,

a3 AGNT So, at 3 PM, right? So, at 3 [interrupt] Good.
SUBJ have ice cream. [hoarsely] Yah Yes.

a4 AGNT So, at that time, there is "Have ice cream", right? Okay. Then I’ll enter it as follows...
SUBJ Right.

b1 AGNT Do you have another appointment? Then tell me the next appointment, please.
SUBJ Yes. On (.) Wednesday.

b2 AGNT So, on Wednesday, right? So, at 4 PM, right? Good. What have[interrupt]
SUBJ Yes. 4 PM. Yes. Bingo.

b3 AGNT So, at that time there is "Hiking", right? Fine. What[interrupt]
SUBJ No. BIN-GO (-) Game.

b4 AGNT So, at that time there is "Game", right? Okay. Then I’ll enter it as follows...
SUBJ (1.5) Yes.

b1 AGNT Do you have[interrupt]
SUBJ Yes yesyes I understand (1.5) I’d like to discuss this with the people uhm directly whether a

b2 AGNT So you have "be arranged", right?
SUBJ bowling meeting in the evening (1.5) Could be arranged Bowling.

b3 AGNT [glitch]So you have "be arranged", right?
SUBJ Yes, arrange (-) to discuss (2.0) a meeting for bowling

b4 AGNT (2.0) Good. So you have bowling, right?
SUBJ [chuckling] Yes, that is good. Bowling.

c1 AGNT Then tell me the next appointment, please.
SUBJ I have uhm (-) today shopping *thr 3 PM 3 PM *appoin

c2 AGNT
SUBJ appointment with <Name> (.) and then I also(?) later go shopping later *thr 3 PM with <Name>

c3 AGNT
SUBJ (.) and (-) then I also go shopping (-) later

Figure 5: Examples of observed interaction styles (autonomous study): Top: older adult, brief but casual style; second from top: older
adult, brief style; settling on alternative / partial event description; second from bottom: older adult, more verbose style; renegotiation;
bottom: person with noticeable cognitive impairment, verbose turns, exacerbated by dysfluent and unclear articulation.
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Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive
neurological disease that affects the speech motor functions, re-
sulting in dysarthria, a motor speech disorder. Speech and artic-
ulation deterioration is an indicator of the disease progression
of ALS; timely monitoring of the disease progression is critical
for clinical management of these patients. This paper inves-
tigated machine prediction of intelligible speaking rate of nine
individuals with ALS based on a small number of speech acous-
tic and articulatory samples. Two feature selection techniques
- decision tree and gradient boosting - were used with support
vector regression for predicting the intelligible speaking rate.
Experimental results demonstrated the feasibility of predicting
intelligible speaking rate from only a small number of speech
samples. Furthermore, adding articulatory features to acoustic
features improved prediction performance, when decision tree
was used as the feature selection technique.
Index Terms: amyotrophic lateral sclerosis, intelligible speak-
ing rate, support vector regression

1. Introduction
Amyotrophic lateral sclerosis (ALS), also referred to as Lou
Gehrig’s disease, is a fast progressive neurological disease that
causes degeneration of both upper and lower motor neurons and
affects various motor functions, including speech production
[1, 2]. The typical survival time is 2-5 years from the onset time
[2]. ALS affects between 1.2 and 1.8 /100,000 individuals and
the incidence is increasing at a rate that cannot be accounted for
by population aging alone [3]. Approximately 30% of patients
present with significant speech abnormalities at disease onset;
of the remaining patients, nearly all will develop speech deterio-
ration as the disease progresses [4, 5]. Technology for objective,
accurate monitoring of speech decline is critical for providing
timely management of speech deterioration in ALS and for ex-
tending their functional speech communication. Currently, ALS
Functional Rating Scale-Revised (ALSFRS- R) - a self-report
evaluation - is used for monitoring the progression of changes
across motor function [6]. ALS-FRS-R includes 3 questions
pertaining to speech, swallowing, and salivation. Commonly

used clinical measures for communication efficiency include
speech intelligibility (percentage of words that are understood
by listeners) and speaking rate (number of spoken words per
minute, WPM), which are not closely correlated. Intelligible
speaking rate (also called the communication efficiency index)
combines intelligibility and rate in a form of speech intelligibil-
ity ⇥ speaking rate, providing an index of intelligible spoken
words per minute (WPM) [7, 8, 9].

Recent studies have tried to predict the rate of speech intel-
ligibility decline of ALS using an interpretable model based on
a comprehensive data set with measures from articulatory, res-
piratory, resonatory, and phonatory subsystems [10, 11, 12]. Al-
though this approach is promising for understanding the mecha-
nisms of speech decline in ALS, it may not be suitable for clini-
cal environment, given the skill level and the significant time de-
mands required for the data collection and analysis. Novel turn-
key and automated speech assessment approaches are, there-
fore, needed to facilitate clinical diagnosis and management.

Speech signals can be collected using any audio collection
devices such as a smart phone and thus can be a great source of
information for dysarthria severity estimation. The feasibility
of using speech signals revealed promising results in a number
of recent studies for disease detection and severity estimation in
depression [13, 14], traumatic brain injury [15], and Parkinson’s
disease detection or severity estimation [16, 17, 18, 19, 20, 21].
Our recent work also showed the feasibility of detection of ALS
from speech samples [22]. Estimating the progression of ALS
from speech samples using data-driven approaches, however,
has rarely been attempted.

Automatic speech recognition (ASR) systems are a promis-
ing but relatively unexplored solution [23, 24]. One significant
limitation of ASR for this application is, however, that most
approaches require a prohibitively large number of speech sam-
ples, since the approach is based on counting the percentage
of correctly recognized words. This might be impractical for
persons with motor speech disorders due to patient fatigue or
variable responses. Yet another challenge of ASR approach is
the potential performance variability caused by different speech
recognition systems, which is currently understudied.

This project investigated the estimation of speech deteriora-
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(a) Wave System (b) Sensor Locations. Labels are described in text.

Figure 1: Data collection setup.

tion due to ALS from a number of short speech samples. Data-
driven approaches were used to predict intelligible speaking
rates of individuals with ALS. As ALS is a motor neuron dis-
ease, it affects the articulatory movements including tongue and
lip motion patterns [9]. Thus we also tested if the inclusion of
articulatory movement data on top of acoustic data can benefit
the prediction. Previous studies by Hahm and colleagues used
quasi-articulatory features that were inversely mapped from
acoustic data, which resulted in improvement for detections of
Parkinson’s condition estimation [25]. We hypothesized that
adding articulatory information to the acoustic data might also
benefit the speech performance prediction in ALS.

To our knowledge, this project is the first that aims to pre-
dict communication efficiency (intelligible speaking rate or in-
tellgible rate) in ALS from a small number of speech (acoustic
and articulatory) samples using data-driven approaches. Speech
samples are short phrases that are spoken in daily life (e.g., How
are you doing?). A pre-defined set of speech features was ex-
tracted from acoustic and articulatory samples to represent var-
ious characteristics of the speech. Two feature selection tech-
niques were used together with support vector regression (SVR)
to predict the intelligible speaking rate. We chose to predict
intelligible speaking rate (rather than speech intelligibility and
speaking rate) at this stage, because intelligible speaking rate is
the measure that better represents the communication efficiency
level of ALS patients [8]. To understand if articulatory move-
ment data can improve the prediction, three combinations of
features (acoustic, acoustic + lip data, acoustic + lip + tongue
data) were tested.

2. Data Collection
2.1. Participants

Nine patients (five females) with ALS participated in 14 ses-
sions of data collection. The average age at their first visit
was 61 years (SD = 11). Table 1 gives the speech intelligibil-
ity, speaking rate, and intelligible speaking rate values for each
recorded session. Three of the participants contributed data
more than once. S04-S05 were from the same participant but
with a year gap. S06-08 were from another patient, with five
months and nine months intervals between each two consecu-
tive visits. S09-11 were from another patient with four months
and eight months gaps between each two consecutive visits.

2.2. Setup and Procedure

An electromagnetic articulograph (Wave system, NDI Inc., Wa-
terloo, Canada) was used for collecting speech acoustic and ar-

Table 1: Speech intelligibility, speaking rate, and intelligible
speaking rate in each recorded session.

Session
ID

Speech
Intelli-
gibility

(%)

Speaking
Rate

(WPM)

Intelligible
Rate (WPM)

S01 95.45 136.60 130.38
S02 80.00 147.98 118.38
S03 100.00 182.33 182.33
S04 98.18 172.54 169.40
S05 79.09 121.10 95.78
S06 99.00 164.189 162.54
S07 98.18 110.47 108.46
S08 0.00 41.05 0.00
S09 94.55 111.11 105.05
S10 80.91 108.20 87.54
S11 23.64 80.29 18.98
S12 99.00 108.73 107.64
S13 96.36 33.33 32.12
S14 79.09 71.88 56.85

Average 80.25 113.56 92.59
SD 29.37 40.04 53.51

ticulatory data synchronously. Wave is one of the two com-
monly used electromagnetic motion tracking technologies by
tracking small wired sensors that are attached to the subject’s
tongue, lips, and head [26]. Figure 1a pictures the device and
the patient setup. The spatial accuracy of motion tracking using
Wave is 0.5 mm when sensors are in the central space of the
magnetic field [27].

After a participant was seated next to the Wave magnetic
field generator, sensors were attached to the participant’s fore-
head, tongue, and lips. The head sensor was used to track head
movement for head-correction of other sensor’s data. The four-
sensor set - tongue tip (TT, 5-10 mm to tongue apex), tongue
back (TB, 20-30 mm back from TT), upper lip (UL), and lower
lip (LL) - was used for our experiments as previous studies indi-
cated that the set is optimal for this application [28, 29, 30]. The
positions of five sensors attached to a participant’s head, tongue
and lips were shown in Figure 1b.
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All participants were asked to repeat a list of pre-defined
phrases multiple times. The phrases were selected based on
lists of phrases that are commonly spoken by AAC (alterna-
tive and augmentative communication) users in their daily life
[31, 32]. The acoustic and articulatory data were recorded syn-
chronously.

Speech intelligibility and speaking rate were obtained by a
certified speech-language pathologist with the assistance of SIT
software [33]. Intelligible rate was the multiplication of speech
intelligibility and speaking rate. The range of intelligible rate in
this data set was between 0-182 words per minute (WPM).

2.3. Data Processing

While raw acoustic data (sampling rate 16Khz, 16 Bit resolu-
tion) were used directly for feature extraction, a processing pro-
cedure was performed on the articulatory data prior to analy-
sis. The two steps of articulatory data processing included head
correction and low pass filtering. The head translations and ro-
tations were subtracted from the tongue and lip data to obtain
head-independent tongue and lip movements. The orientation
of the derived 3D Cartesian coordinates system is displayed in
Figure 1b, in which x is left-right, y is vertical, and z is front-
back directions. A low pass filter (i.e., 20 Hz) was applied to
remove noise [26].

Invalid samples were rare and were excluded from the anal-
ysis. A valid sample contained both valid acoustic and articu-
latory data. A total of 944 valid samples were recorded. The
range of number of samples from individual patients was from
39 to 80.

3. Method
The method of intelligible speaking rate prediction in this
project involved two major steps: feature preparation and re-
gression, where feature preparation included feature extraction
and selection. The goal of feature extraction was to obtain
content-independent acoustic and articulatory features from the
data samples. Feature selection was to reduce the data size by
choosing the best features for regression. Regression aimed to
predict a target score (intelligible speaking rate) from features
that are extracted from a data sample.

3.1. Feature Extraction

The script provided in [22] was used for extracting acoustic and
articulatory features from acoustic and articulatory motion data,
respectively. The script was modified based on that provided in
[34]. The window size was 70 ms and the frame shift was 35 ms.
The script extracted up to 6,373 pre-defined acoustic features
that were categorized in groups such as jitter, shimmer, MFCC,
and spectral features. However, low frequency articulatory data
do not contain these information. The following feature groups
were disabled for articulatory feature extraction [22] :

Jitter, Shimmer, logHNR, Rfilt, Rasta, MFCC, Harmonicity,
and Spectral Rolloff.

For each feature group, the following features were calcu-
lated and fed into the final feature set before fed into a feature
selection technique: mean, flatness, posamean (position of the
algorithmic mean), range, maxPos, minPos, centroid, stddev,
skewness (a measure of the asymmetry of the spectral distribu-
tion around its centroid), kurtosis (an indicator for the peaked-
ness of the spectrum), etc. Please refer to [34, 35] for details of
these features.

Therefore, for each dimension (x, y, or z) of a sensor, 1,200
features were extracted. In total, 20,733 features (6,373 acoustic
feature + 3,600 articulatory features ⇥ 4 sensors (Tongue Tip,
Tongue Body Back, Upper Lip, and Lower Lip) were used in
the regression test.

3.2. Feature Selection

Feature selection [36] was performed to reduce the data to the
most significant features. We used decision tree regression and
gradient boosting as the feature selection procedures.

3.2.1. Decision Tree

Decision trees are rule-based, non-linear classifica-
tion/regression models that perform recursive partitioning
on the data by separating the data into disjoint branches (thus
forming a tree structure) for classification or regression [37].
There are a number of ways to measure the quality of a split or
branching. We used MSE (mean squared error) as the measure
in this project, which is equal to variance reduction as feature
selection criterion.

Decision tree-based regression fits the best least squared er-
ror criterion to the data. The expected value at each leaf node
that minimizes this least squared error is the average of the tar-
get values within each leaf l.

v
l
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1

|D
l

|
X

Dl

y
i

(1)

where D
l

is the set of samples that are partitioned to leaf l and
y

i

is the target value of sample i in set D
l

.
The splitting criterion is to minimize the fitting error of the

resultant tree. The fitting error was defined as the average of
the squared differences between the target values Y

l

at a leaf
node l and the mean value v

l

. Error of a tree was defined as the
weighted average of the error in its leaves and the error of a split
is the weighted average of the error of its resulting sub-nodes.

3.2.2. Gradient Boosting

Gradient boosting [38] applies boosting to regression models
by selecting simpler base learners to current pseudo residuals
by minimizing least squares loss at each iteration. The pseudo
residuals are the gradient of the loss functional that is to be
minimized, with respect to model values at each training data
point, evaluated at the current step. Given training samples
x

i

2 Rd, i = 1, . . . , n, and a regression vector y 2 Rn such
that y

i

2 R we want to find a function F (⇤)(x) that maps x to
y, to minimize the expected value of some specified loss func-
tion �(y, F (x)) over the joint distribution of all (x,y) values.
Boosting approximates F (⇤)(x) by a stage-wise summation of
the form

F (x) =
NX

i=0

�igi(x;ai) (2)

where the functions g
i

(x;ai) are chosen as base classifiers of
x in stage i where ai is set of parameters. �

i

is the expansion
coefficient for stage i.

Gradient boosting solves for arbitrary loss functions for
each stage in two steps. First, it fits the function g

i

(x; ai) to
current pseudo residuals by minimizing the least squares loss.
Second, the optimal value of the expansion coefficient �

i

was
found by single parameter optimization based on a general loss
criterion. We selected gradient boosting in this experiment be-
cause the model generally works well with small datasets [38].
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3.3. Selected Features

The partial lists of features that were selected by decision tree
and gradient boosting are given below. Decision tree selected
57 features in total; while gradient boosting selected 517 fea-
tures. The features selected from articulatory data are indicated
in parenthesis; otherwise, the features are selected from acous-
tic data. Below are the top 10 selected features by decision tree:

1. audspec lengthL1norm sma lpgain
2. shimmerLocal sma de iqr1-3
3. logHNR sma percentile99.0
4. F0final sma quartile3
5. mfcc sma[7] quartile1
6. pcm fftMag spectralFlux sma quartile1
7. audSpec Rfilt sma de[2] quartile1
8. pcm fftMag fband3-8 sma de stddevRisingSlope (TTz)
9. F0final sma stddev

10. pcm fftMag spectralKurtosis sma peakMeanAbs (TTy)

where mfcc stands for mel-frequency cepstral coefficients 1-12;
fft denotes fast Fourier transform; pcm means pulse-code mod-
ulation, the standard digital representation of analog signals;
quartile1 denotes the first quartile (the 25% percentile); quar-
tile 2 denotes the second quartile (the 50% percentile); quartile
3 denotes the third quartile (the 75% percentile); iqr1-3 means
the inter-quartile range: quartile3-quartile1; Mag means magni-
tude; Rfilt means Relative Spectral Transform (RASTA)-style
filtered; F0final means the smoothed fundamental frequency
(pitch) contour; stddev denotes the standard deviation of the
values of the contour; kurtosis is an indicator for the peakedness
of the spectrum; sma means smoothing by moving average; de
means delta; stddevRisingSlope is the standard deviation of ris-
ing slopes, i.e. the slopes connecting a valley with the following
peak. The suffix sma appended to the names of the low-level
descriptors indicates that they were smoothed by a moving av-
erage filter with window length 3 [35]. Spectral flux (F t

S

) for N
FFT bins at time frame t is computed as

F t

S

=

vuut 1
n

NX

f=1

(
Xt(f)

Et

� Xt�1(f)
Et�1

)2 (3)

where Et is energy at time frame t; Xt(f) is the FFT bin f
based on data X at time t. Further, audspec stands for au-
ditory spectrum; shimmerLocal is the local (frame-to-frame)
Shimmer (amplitude deviations between pitch periods); lpgain
implies the linear predictive coding gain; lengthL1norm is the
magnitude of the L1 norm; percentile99.0 is the outlier-robust
maximum value of the contour, represented by the 99% per-
centile and logHNR is the log of the ratio of the energy of
harmonic signal components to the energy of noise like signal
components. A more descriptive explanation, for example for
mfcc sma[7] quartitle1, is the 25% percentile of the 7th MFCC
that was smoothed using an averaging filter with window length
3.

Below are the top 10 selected features by gradient boosting:

1. audspec lengthL1norm sma lpgain

2. pcm fftMag fband1000-4000 sma percentile1.0

3. F0final sma linregc2

4. logHNR sma percentile99.0

5. mfcc sma[6] quartile2

6. pcm fftMag fband3-8 sma de lpgain(TBx)

7. audspecRasta lengthL1norm sma peakDistStddev

8. pcm fftMag spectralFlux sma stddevRisingSlope

9. F0final sma percentile99.0

10. audSpec Rfilt sma[19] iqr1-3

where percentile1.0 is the outlier-robust minimum value of the
contour, represented by the 1% percentile; linregc2 is the off-
set (c from y = mx+c) of a linear approximation of the con-
tour; fband denotes frequency band; audspecRasta is the Rela-
tive Spectral Transform applied to Auditory Spectrum.

The features were selected based on a feature importance
score, which is based on the (normalized) total reduction of the
variance brought by that feature [37]. These features with high-
est importance scores were selected.

3.4. Support Vector Regression

Support vector regression is a regression technique that is based
on support vector machine [39], was used as the regression
model in this project. SVR is a soft-margin regression technique
that depends only on a subset of the training data, because the
cost function for building the model does not care about train-
ing points that are beyond the margin [40], which is similar with
SVM. Details on the introduction of SVR can be found in [41].
We used LIBSVM to implement the experiment [42]. After a
preliminary test, ⌫-SVR [43] outperformed or was comparable
to others, thus was selected for regression in this experiment.
⌫-SVR is a variation of standard SVR, which uses ⌫ to control
the ✏. Given training vector x

i

2 Rd, i = 1, . . . , n, and a re-
gression vector y 2 Rn such that y

i

2 R, the SVR optimization
problem is

min
w,b,⇠,✏2Rn

1
n

nX

i=1
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i

) � ⌫✏ +
1
2
kwk2

subject to y
i

(w|�(xi) + b) � ✏ � ⇠i,

⇠
i

� 0, i = 1, . . . , n, ✏ � 0

(4)

A kernel function is used to describe the distance between two
samples (i.e., r and s in Equation 5). The following radial basis
function (RBF) was used as the kernel function K

RBF

in this
study, where � is an empirical parameter (� = 1/n, by default,
where n is the number of features) [26]:

K
RBF

(r, s) = exp(1 � �||r � s||). (5)

Please refer to [42] for more details about the implemen-
tation of the SVR. All feature values were normalized using
z-score before they were fed into SVR.

3.5. Experimental Design

As mentioned previously, we tested the prediction on three con-
figurations of data to understand the performance using acoustic
signals only and if adding articulatory information is beneficial
for the regression. The three configurations of data were acous-
tic data only, acoustic + lip data, and acoustic + lip data + tongue
data.

Three-fold cross validation strategy was used, where all 14
sessions of data were divided into three groups with a balanced
distribution of intelligible rates. Initially all the 14 data col-
lections were arranged in ascending order by intelligible rate
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(a) Results measured by Pearson correlation.
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(b) Results measured by Spearman correlation.

Figure 2: Experimental results based on acoustic data only, acoustic + lip data, and acoustic + lip + tongue data using support vector
regression and two feature selection techniques.

(labelled from 1 to 14). Then a jack-knife strategy was used to
choose the groups as testing data and the rest as training data.
The three folds are sessions (1, 4, 7, 10, 13), (2, 5, 8, 11, 14), (3,
6, 9, 12) (in Table 1). The last validation had four sessions for
testing. The data size for testing was about 120 - 360 samples
(and the rest for training) in each validation.

Two correlations, Pearson and Spearman, were used to eval-
uate the performance of the regression. We used both corre-
lations just in case they provide complementay information,
becuase of their different characteristics. Pearson correlation
is more sensitive than Spearman correlation for outliers [34];
Pearson is typically applied for normally distributed data. The
data size is relatively small and the distribution was unknown in
this project. Thus, using both correlations (rather than just one
of them) may provide more detailed information for interpret-
ing the experimental results. A higher correlation between the
estimated rate and the actual rate indicates a better performance.

4. Results and Discussion
Figure 2 gives the results of the regression experiments using
SVR and two feature selection techniques, decision tree and
gradient boosting, based on acoustic data only, acoustic + lip
data, and acoustic + lip + tongue data. The results were mea-
sured by Pearson correlation (Figure 2a) and Spearman corre-
lation (Figure 2b). As shown in Figure 2a, the three data con-
figurations obtained Pearson correlations, 0.60, 0.63, and 0.70,
respectively when using decision tree, and 0.81, 0.82, and 0.83
when using gradient boosting. The three data configurations ob-
tained Spearman correlations, 0.62, 0.66, and 0.71 respectively
when using decision tree, and 0.82, 0.82, and 0.83 when using
gradient boosting. There was no difference among the values
measured by Pearson or Spearman correlation.

The experimental results indicated the feasibility of predict-
ing intelligible speaking rate from a small number of speech
acoustic (and articulatory) samples.

In addition, the results demonstrated that adding articula-
tory data could improve the performance when using decision
tree as the feature selection but not when using gradient boost-
ing. When lip data were added to the acoustic data, the predic-
tion performance was improved when decision tree was used
for feature selection. Adding both lip and tongue data obtained
the best performance. These findings are consistent with the lit-
erature that speech motor function decline (particularly in the
articulatory subsystem) are early indicators of the bulbar dete-
rioration in ALS [7]. The added benefit of articulatory data was
not obtained when using gradient boosting possibly because this
approach was more effective in selecting acoustic features than

using the decision tree approach, which required the added ar-
ticulatory features.

These finding suggested the possibility, in the future, of de-
veloping mobile technologies that can collect speech acoustic
and lip (via a webcam) as a practical tool for monitoring the
ALS speech performance decline as an indicator of disease pro-
gression. There are currently logistical obstacle for acquiring
tongue data [26] (compared with acoustic data). However, with
the availability of portable devices such as portable ultrasound,
we anticipated that tongue data will be more accessible in the
near future. An alternative solution for tongue data collection is
acoustic-to-articulatory inverse mapping [25].

Although comparison of the feature selection techniques
was not a focus in this paper, the experimental results indi-
cated that gradient boosting outperformed decision tree. Gra-
dient boosting was so powerful such that adding articulatory
information did not show benefit. This finding suggested that
feature selection is critical. More feature selection techniques
will be explored in the next step of this study.

Figure 3 gives the scatter plots of the measured intelligible
rate and predicted intelligible rates using SVR + decision tree
on acoustic features only (Figure 3a) and using both acoustic
and articulatory features (Figure 3b). Each marker (cross) in the
figure represents the measured and predicted intelligible rates
on one data sample (a short phrase produced by a patient). As
described earlier, each patient produced multiple samples in one
session.

A linear regression was applied on both Figure 3a and 3b.
The R-squared values illustrated how close the data are to the
fitted regression line. A larger value is better. As illustrated in
Figure 3, adding articulatory data on top of acoustic data ob-
tained a larger R2 value, which indicated articulatory features
(tongue + lips) improved the prediction on top of acoustic fea-
tures (using decision tree as the feature selection technique).
Specifically, adding articulatory data significantly improved the
prediction for some sessions, for example, S13 (with intelligible
rate 32.12 WPM) and S05 (with intelligible rate 95.78 WPM). A
further analysis is needed to discover how articulatory data af-
fect the prediction performance for these sessions (or patients).

Limitation. The current approach was purely data-driven
and used a large number of low-level acoustic and articulatory
features. Inclusion of high-level, interpretable features would
help the understanding of how these individual features could
contribute to the speech decline. Examples of interpretable fea-
tures include formant centralization ratio [19], intonation [20],
and prosody [44], which have already been used for other dis-
eases (e.g., Parkinson’s disease).
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(a) Acoustic data only.
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(b) Acoustic + lip + tongue data.

Figure 3: Scatter plots of actual intelligible speaking rate (words per minute) and the predicted values using SVR + decision tree for
two data configurations: (a) acoustic data only, and (b) acoustic + lip + tongue data.

5. Conclusions and Future Work
This paper investigated the automatic assessment of speech per-
formance in ALS from a relatively small number of speech
acoustic and articulatory samples. Support vector regression
with two feature selection techniques (decision tree and gra-
dient boosting) were used to predict intelligible speaking rate
from speech acoustic and articulatory samples. Experimental
results showed the feasibility of intelligible speaking rate pre-
diction from acoustic samples only. Adding articulatory data
further improved the performance when decision tree was used
as the feature selection technique. Particularly, even only lip
information was added, the prediction performance was signif-
icantly improved. The best results were obtained when both lip
and tongue data were added.

The next step of this research would further verify this find-
ing using a larger data set and other feature selection and re-
gression techniques (e.g., deep neural network [25]).
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Abstract

Two approaches to reducing effort in switch-based
text entry for augmentative and alternative commu-
nication devices are word prediction and efficient
coding schemes, such as Huffman. However, char-
acter distributions that inform the latter have never
accounted for the use of the former. In this paper,
we provide the first combination of Huffman codes
and word prediction, using both trigram and long
short term memory (LSTM) language models. Re-
sults show a significant effect of the length of word
prediction lists, and up to 41.46% switch-stroke sav-
ings using a trigram model.

1. Introduction

There are approximately 270,000 people in North
America with spinal cord injuries, approximately 47%
of whom develop quadriplegia (also called tetraple-
gia), which is a partial or total paralysis of the limbs
and torso [1, 2]. In addition to these traumatic losses
of motor function, millions more are affected by neu-
romotor disorders, collectively called dysarthria, that
impair the production of speech secondary to var-
ious congenital or traumatic conditions, including
cerebral palsy, stroke, Parkinson’s disease, and mul-
tiple sclerosis.

Individuals with communication disorders often
use augmentative and alternative communication (AAC)
technologies to express themselves, specifically to
synthesize speech from typed text or symbol sequences.
These systems can employ a wide range of inputs,
including hand gestures, typing, or eye and head move-
ments [3] that are designed to minimize muscle move-
ment, given global motor deficits. These modalities
can interact with either screen-based or screen-free
paradigms in which input is transduced to a cursor
position [4]. Typically, symbols are selected when

the user either dwells on them or performs a spe-
cific action, such as blinking or activating a switch,
as shown in Figure 1.

Figure 1: Example of a two-button head-switch
mounted on a wheelchair. Image used by permis-
sion of the Tetra Society of North America.

Through a series of local interviews with AAC
users, we have found that screen-based approaches
can interfere with certain social aspects of conver-
sation. In particular, users emphasized that screens
often form a barrier to eye contact between conver-
sants and that, given a shared screen, conversation
partners will often “read-as-they-go,” and interrupt
the speaker, resulting in editorialization. For these
reasons, we are optimizing a screen-free system us-
ing eye and head movements.

In this paper, we assign codes to alphanumeric
English characters using r-ary Huffman coding, as is
typical. However, since AAC devices are also likely
to benefit from word prediction, the distribution of
those characters in training data will not necessar-
ily resemble actual use. For example, although the
letter ‘e’ is quite frequent, if it tends to occur to-
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wards the ends of words, it is less likely to be typed
if those words can be accurately predicted from con-
text. We therefore provide the first work that ad-
justs Huffman codes given distributions subsequent
to word prediction, using both trigram and long short
term memory (LSTM) language models. The result
is up to 41.46% switch-stroke savings using a tri-
gram model.

1.1. Previous work

Previous AAC systems for gestural text entry have
sought to minimize selection complexity by limiting
the number of possible inputs. The H4, EdgeWrite,
and ‘Left, Up, Right, Down’ Writer systems all re-
lied on codes that used four discrete inputs [5, 6, 7],
typically target regions placed at the edges or cor-
ners of a screen. The MDITIM (Minimal Device In-
dependent Text Input Method) system uses a similar
convention, with four inputs dedicated to the cod-
ing of characters and one input reserved as a mod-
ifier, for example, to achieve capitalization [8]. In
order to further simplify the input process, the H4
and MDITIM systems, unlike EdgeWrite, have used
prefix-free codes to avoid the need for a unique ter-
mination event, such as a finger-up or blink, to des-
ignate the end of each character [5, 8].

Expert users, with about 2.5 hours of experience
using the EyeS eye gesture communication system,
had text communication rates of 6.8 words per minute
(wpm), as compared with typical speech rates of 130-
200 wpm, and typing rates of 30-40 wpm for unim-
paired typists [9, 10, 11]. Similarly, users with 5.0
hours of practice using the MDITIM had an aver-
age text entry speed of less than 10 wpm [8]. One
approach to improving communication rate is to re-
duce the number of inputs needed to enter each char-
acter. The H4 system uses Huffman codes to form a
prefix-free code, and resulted in an average text en-
try rate of 20 wpm after 6.5 hours of experience [12].
Roark et al. [13] also uses Huffman coding to select
the symbols to highlight during character scanning
process, minimizing the expected bits per symbol.

Word prediction is another strategy for optimiz-
ing text entry. Trnka et al. [14] showed that word
prediction, using a recency-of-use model, increased
communication rates in an AAC-like onscreen key-
board system and that more advanced methods based
on statistical language modelling proved more effec-

tive, increasing communication rates by 56.8%. The
number of options presented is an important factor
– longer lists increases the chances that the desired
word will be found, but this also increases the visual
or auditory scan time to evaluate the list. Mackenzie
[15] suggested that a list size of N = 5 is optimal.

2. Data

We use three data sets:

Wall Street Journal (WSJ) Selected 2,499 stories
from a three-year WSJ collection consisting
of 1,098,785 word tokens (43,283 word forms).
This dataset contains the most formal language
of the three databases.

Essays A collection of essays, poems, and short sto-
ries from Grade 11 students in high-schools
across Ontario recorded as part of their regular
curricula. This consists of 5,831,405 word to-
kens (114,113 word forms) across 5,448 doc-
uments. The formality of the writing is appro-
priate for teenage writers.

NUS Short Message Service (SMS) Corpus [16] A
collection of 55,835 SMS messages collected
by the NLP group of the National University
of Singapore. This dataset consists of 548,210
word tokens (33,694 word forms) and repre-
sents the least formal language of the three
databases here.

For our purposes, alphabets are reduced to lower-
case alphanumerics and ‘space’. All capital letters
are changed to lowercase equivalents and extrane-
ous characters are deleted. Additional datasets were
considered, including some artificial simulations of
AAC text, but these were either too small for our
purposes, or provided no additional benefit to the
data sets described above.

3. Methods

We train language models to build our word predic-
tion system that produces the list of N most proba-
ble next words given the history of characters typed.
Each alphanumeric English characters and the in-
dices of the prediction list is assigned a code using r-
ary Huffman coding based on the information we get
from the word prediction system, assuming that the

99



user types with an AAC system that has r switches.
Input savings by using the word prediction system is
calculated for varying N and r values.

We describe the two language models used in
word prediction in section 3.1, and our implementa-
tion of r-ary Huffman coding in section 3.2.

3.1. Language models

We train two types of language model for each data
set. Each produces an N -best prediction list for each
word wi given the previous words wi�n+1, ..., wi�1.
That is, we choose the top N probabilities from the
list L such that

L = {P (wj |wi�n+1...wi�1) : 0  j < |V |} (1)

where |V | is the size of the vocabulary V , and wj is
the j-th word in V .

3.1.1. Trigram model

We compute the probability of corpus C:

P (C) =

||C||Y

i=1

P (wi|w1...wi�1) (2)

To address sparseness, we apply Witten-Bell smooth-
ing [17] which linearly interpolates the trigram prob-
ability and lower-order smoothed probabilities re-
cursively. In general, the nth-order Witten-Bell prob-
ability is:

Pwb(wi|wi�n+1...wi�1) =
�wi�1

i�n+1
P (wi|wi�n+1...wi�1)+

(1� �wi�1
i�n+1

)Pwb(wi|wi�n+2...wi�1)
(3)

The parameters �wi�1
i�n+1

are computed by

�wi�1
i�n+1

= 1�
N(wi�1

i�n+1)

N(wi�1
i�n+1) + SC(wi�1

i�n+1)
(4)

where

N(wi�1
i�n+1) = |{wi : count(wi�n+1...wi�1 > 0}|

(5)
SC(wi�1

i�n+1) =
X

w
j

count(wi�n+1...wi�1wj) (6)

The intuition is to give more weight to trigrams in
the training set, and to back off to the lower-order
probabilities for those that are not.

Trigram t Count logP (t) logPwb(t)
come up with 20 �0.1140 �0.1760
come up to 0 �1 �1.8059
come up sing 0 �1 �6.1763

Table 1: Example trigram probabilites and
smoothed probabilites from the WSJ dataset.

3.1.2. Long Short-Term Memory model

Long short-term memory (LSTM) [18] units are a
special type of unit in recurrent neural networks (RNNs)
designed to solve the vanishing-exploding gradient
problem.

Let s1, ..., sN be sentences in corpus C, which
has N sentences. Suppose wi

1, ..., w
i
J are words in

sentence si with J words. We define xik to be the
vector word embedding of wi

k. We also define hlt 2
<n to be the hidden state of layer l at timestep t.
Then, for a sequence wi

1, ..., w
i
j , we have xik = h1k

for 1  k  j. We apply dropout regularization
only to non-recurrent connections:

0

BB@

i
f
o
g

1

CCA =

0

BB@

�
�
�
⇢

1

CCAT2n,4n

✓
D(hl�1

t )
hlt�1

◆
(7)

clt = f · clt�1 + i · g (8)

hlt = o · ⇢(clt) (9)

The vectors i, f, o, c 2 <n represent input, forget,
output, and cell vectors respectively. T2n,4n repre-
sents a linear transformation from <2n to <4n, D
represents the dropout operator which sets a percent-
age of its parameter to zero, � represents the element-
wise sigmoid activation function and ⇢ represents
the element-wise tanh activation.

The hidden states hLt of the top layer L are used
to infer yit given a sequence xi1, ..., x

i
t. The model is

trained to maxmize the probabilityQN
i=1

QJ
t=1 P (wi

t|xi1...xit�1).
We train a 2-layer LSTM language model with

1,500 hidden units in each layer. Our vocabulary V
contains the 50,000 most frequent words in the given
corpus, and replaces all other words with < unk >.
We use a dropout rate of 65% to the non-recurrent
connections as described above.
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3.2. r-ary Huffman coding

The r-ary Huffman coding method constructs trees
in which each leaf node is a unique character from
the alphabet. This results in a prefix-free coding in
which the coded string for each character cannot be
a prefix of the coded string of some other character.
This is in contrast to Morse code in which, e.g., the
letter ‘e’ is encoded as ‘·’, which is the prefix of 17
other alphanumeric characters, including ‘s’ (‘· · ·’),
which can lead to ambiguities.

Huffman coding depends on the prior probabil-
ity of each character, ci, in the alphabet, which is
simply the frequency of that character in the training
corpus (i.e, PH(ci) = Count(ci)/

P
j Count(cj)

[19].
The key to the present work is that the corpora

upon which these frequencies are based are first pro-
cessed by the word prediction software. A corpus
to be studied is divided into training, development,
and test sets. The development and test sets are pro-
cessed using language models trained on the training
set, so that as soon as a word appears in the predic-
tion list, all remaining characters are replaced with
a single special character corresponding to their in-
dex in the prediction list as exemplified in in Table 2.
This processed development set is used to compute
r-ary Huffman codes, and the input savings are cal-
culated between the original and processed test sets
as follows:

IS(org, proc) =
len(org)� len(proc)

len(org)
·100 (10)

where org and proc represent the original and pro-
cessed test sets respectively, and len calculates the
number of switch-strokes needed to type characters
in the sets which would be equal to the number of
characters if Huffman coding is not used. For ex-
ample, if ‘p’ has code length 3, ‘o’ has code length
2, and ‘#’ has code length 1, then len(’pop’) is 8
where len(’p#’) is 4.

4. Experiments

We partition each dataset into five chunks; each is
iteratively used for development and testing, and the
others are used for training. As described in the pre-
vious section, all reported input savings count the
proportion of code symbols saved – not characters;
this is an important distinction – counting the latter,

Original sentence
the results met estimates of analysts who had
already slashed their projections after the company
said in late august that its 1989 earnings could
Processed sentence
t* re* met es@ $ an% w@ # a* sla@ th$ proj*
af@ @ $ % i% l a@ t* i@ 1% $ c#

Table 2: Example of pre-processing, with N = 5
from WSJ dataset. Each special character (*,@, $,
%, #) in bold represents different indices in the pre-
diction list.

WSJ r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 37.85 37.82 37.29 37.72 35.52
N = 4 39.37 39.25 39.18 38.80 37.69
N = 5 40.60 39.93 40.32 39.83 39.22
N = 6 41.46 40.39 41.16 40.62 40.51

Essay r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 30.64 30.42 30.03 30.07 29.06
N = 4 32.22 31.70 32.07 31.29 31.35
N = 5 33.52 32.30 33.34 32.44 33.02
N = 6 34.45 32.77 34.17 33.39 34.39

SMS r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 20.70 20.02 20.42 19.45 18.99
N = 4 22.10 20.54 21.73 20.81 20.81
N = 5 22.70 20.61 22.40 21.50 22.19
N = 6 22.96 20.72 22.76 21.90 23.27

Table 3: Input savings (in %) on each dataset for
different N and r values using the trigram model.

as is typical in AAC research, would not take our
application of the Huffman code into account.

We run 5-fold cross validation for each number
of coding symbols r = {3, 4, 5, 6,1}, where r =
1 is the baseline character code length of 1, which
mimics the case where Huffman coding is not used,
and the length of the prediction list N = {3, 4, 5, 6}.

Table 3 shows input savings for each dataset us-
ing the trigram model for word prediction. As N in-
creases, we get more input savings because the prob-
ability of the target word being in the prediction list
goes up. However, a two-way F -test on N and r
(Table 4) shows that the value of r does not affect
the savings and that N and r do not interact.

Table 5 shows results obtained from the LSTM
model for word prediction. The trigram model per-
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SumSq MeanSq F Pr(> F )
N 0.0274 0.027399 5.554 0.0193
r 0.0012 0.001227 0.249 0.6184
N : r 0.0000 0.00010 0.002 0.9645

Table 4: Two-way F-test on N and r.

WSJ r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 25.57 25.24 25.81 25.78 25.47
N = 4 27.11 26.96 27.64 27.81 27.70
N = 5 28.39 28.15 28.71 29.20 29.38
N = 6 29.35 29.22 29.66 30.06 30.70

Essay r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 18.56 18.28 18.81 17.82 19.15
N = 4 20.02 19.74 20.43 19.78 21.23
N = 5 21.21 20.76 21.52 21.10 22.87
N = 6 22.08 21.87 22.17 22.08 24.16

SMS r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 14.43 13.51 14.53 14.01 14.26
N = 4 15.61 14.20 15.66 15.24 16.06
N = 5 16.25 14.94 16.16 15.96 17.42
N = 6 16.83 15.55 16.52 16.36 18.52

Table 5: Input savings (in %) on each dataset for
different N and r values using the LSTM model.

forms much better than the LSTM model; validating
this finding on other sets of data should be the sub-
ject of future work.

The most input savings are obtained from the
WSJ, and the least from the SMS dataset. This may
be due to a more consistent grammatical structure
in the former. The results clearly show that the in-
put savings vary a lot depending on the corpus used.
Trnka et al. [14], who showed that word prediction
increased communication rates, also reported higher
input savings when experimented on the Switchboard
corpus, which has a different topic domain and vo-
cabulary size. Analyzing the relation between the
characteristics of a corpus (e.g., vocabulary size, level
of formality, and grammatical structure) and the in-
put saving rate is ongoing.

5. Conclusion and Future Work

In this paper, we examined input savings by com-
bining word prediction models and r-ary Huffman
coding on datasets with different levels of formal-
ity. Future work should evaluate performance ‘on-

line’ with human participants, which may affect the
optimal value of N , given a possible interaction ef-
fect with scanning time. Moreover, even though the
value of r is not significant in terms of input sav-
ings, people might have different levels of difficulty
in memorizing different code lengths1. Piloting the
combination of word prediction and Huffman cod-
ing with real users is the next step, but the theoreti-
cal basis established in this paper is a requisite first
step, since recruiting and training a sufficient num-
ber of participants will depend on constraining N
and r, in order to obtain the appropriate statistical
power. Alternatives to N -gram and LSTM models,
initialized with pre-trained word embedding vectors,
should also be applied to increasingly large datasets.
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